\(\int \frac {1}{x^{5/2} (b x^2+c x^4)^{3/2}} \, dx\) [278]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 350 \[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )^{3/2}} \, dx=\frac {1}{b x^{7/2} \sqrt {b x^2+c x^4}}+\frac {77 c^{5/2} x^{3/2} \left (b+c x^2\right )}{15 b^4 \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}-\frac {11 \sqrt {b x^2+c x^4}}{9 b^2 x^{11/2}}+\frac {77 c \sqrt {b x^2+c x^4}}{45 b^3 x^{7/2}}-\frac {77 c^2 \sqrt {b x^2+c x^4}}{15 b^4 x^{3/2}}-\frac {77 c^{9/4} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{15 b^{15/4} \sqrt {b x^2+c x^4}}+\frac {77 c^{9/4} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{30 b^{15/4} \sqrt {b x^2+c x^4}} \] Output:

1/b/x^(7/2)/(c*x^4+b*x^2)^(1/2)+77/15*c^(5/2)*x^(3/2)*(c*x^2+b)/b^4/(b^(1/ 
2)+c^(1/2)*x)/(c*x^4+b*x^2)^(1/2)-11/9*(c*x^4+b*x^2)^(1/2)/b^2/x^(11/2)+77 
/45*c*(c*x^4+b*x^2)^(1/2)/b^3/x^(7/2)-77/15*c^2*(c*x^4+b*x^2)^(1/2)/b^4/x^ 
(3/2)-77/15*c^(9/4)*x*(b^(1/2)+c^(1/2)*x)*((c*x^2+b)/(b^(1/2)+c^(1/2)*x)^2 
)^(1/2)*EllipticE(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/2))/b^(1 
5/4)/(c*x^4+b*x^2)^(1/2)+77/30*c^(9/4)*x*(b^(1/2)+c^(1/2)*x)*((c*x^2+b)/(b 
^(1/2)+c^(1/2)*x)^2)^(1/2)*InverseJacobiAM(2*arctan(c^(1/4)*x^(1/2)/b^(1/4 
)),1/2*2^(1/2))/b^(15/4)/(c*x^4+b*x^2)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.17 \[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )^{3/2}} \, dx=-\frac {2 \sqrt {1+\frac {c x^2}{b}} \operatorname {Hypergeometric2F1}\left (-\frac {9}{4},\frac {3}{2},-\frac {5}{4},-\frac {c x^2}{b}\right )}{9 b x^{7/2} \sqrt {x^2 \left (b+c x^2\right )}} \] Input:

Integrate[1/(x^(5/2)*(b*x^2 + c*x^4)^(3/2)),x]
 

Output:

(-2*Sqrt[1 + (c*x^2)/b]*Hypergeometric2F1[-9/4, 3/2, -5/4, -((c*x^2)/b)])/ 
(9*b*x^(7/2)*Sqrt[x^2*(b + c*x^2)])
 

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 378, normalized size of antiderivative = 1.08, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {1428, 1430, 1430, 1430, 1431, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1428

\(\displaystyle \frac {11 \int \frac {1}{x^{9/2} \sqrt {c x^4+b x^2}}dx}{2 b}+\frac {1}{b x^{7/2} \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 1430

\(\displaystyle \frac {11 \left (-\frac {7 c \int \frac {1}{x^{5/2} \sqrt {c x^4+b x^2}}dx}{9 b}-\frac {2 \sqrt {b x^2+c x^4}}{9 b x^{11/2}}\right )}{2 b}+\frac {1}{b x^{7/2} \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 1430

\(\displaystyle \frac {11 \left (-\frac {7 c \left (-\frac {3 c \int \frac {1}{\sqrt {x} \sqrt {c x^4+b x^2}}dx}{5 b}-\frac {2 \sqrt {b x^2+c x^4}}{5 b x^{7/2}}\right )}{9 b}-\frac {2 \sqrt {b x^2+c x^4}}{9 b x^{11/2}}\right )}{2 b}+\frac {1}{b x^{7/2} \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 1430

\(\displaystyle \frac {11 \left (-\frac {7 c \left (-\frac {3 c \left (\frac {c \int \frac {x^{3/2}}{\sqrt {c x^4+b x^2}}dx}{b}-\frac {2 \sqrt {b x^2+c x^4}}{b x^{3/2}}\right )}{5 b}-\frac {2 \sqrt {b x^2+c x^4}}{5 b x^{7/2}}\right )}{9 b}-\frac {2 \sqrt {b x^2+c x^4}}{9 b x^{11/2}}\right )}{2 b}+\frac {1}{b x^{7/2} \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 1431

\(\displaystyle \frac {11 \left (-\frac {7 c \left (-\frac {3 c \left (\frac {c x \sqrt {b+c x^2} \int \frac {\sqrt {x}}{\sqrt {c x^2+b}}dx}{b \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{b x^{3/2}}\right )}{5 b}-\frac {2 \sqrt {b x^2+c x^4}}{5 b x^{7/2}}\right )}{9 b}-\frac {2 \sqrt {b x^2+c x^4}}{9 b x^{11/2}}\right )}{2 b}+\frac {1}{b x^{7/2} \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {11 \left (-\frac {7 c \left (-\frac {3 c \left (\frac {2 c x \sqrt {b+c x^2} \int \frac {x}{\sqrt {c x^2+b}}d\sqrt {x}}{b \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{b x^{3/2}}\right )}{5 b}-\frac {2 \sqrt {b x^2+c x^4}}{5 b x^{7/2}}\right )}{9 b}-\frac {2 \sqrt {b x^2+c x^4}}{9 b x^{11/2}}\right )}{2 b}+\frac {1}{b x^{7/2} \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {11 \left (-\frac {7 c \left (-\frac {3 c \left (\frac {2 c x \sqrt {b+c x^2} \left (\frac {\sqrt {b} \int \frac {1}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}-\frac {\sqrt {b} \int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {b} \sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{b \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{b x^{3/2}}\right )}{5 b}-\frac {2 \sqrt {b x^2+c x^4}}{5 b x^{7/2}}\right )}{9 b}-\frac {2 \sqrt {b x^2+c x^4}}{9 b x^{11/2}}\right )}{2 b}+\frac {1}{b x^{7/2} \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {11 \left (-\frac {7 c \left (-\frac {3 c \left (\frac {2 c x \sqrt {b+c x^2} \left (\frac {\sqrt {b} \int \frac {1}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{b \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{b x^{3/2}}\right )}{5 b}-\frac {2 \sqrt {b x^2+c x^4}}{5 b x^{7/2}}\right )}{9 b}-\frac {2 \sqrt {b x^2+c x^4}}{9 b x^{11/2}}\right )}{2 b}+\frac {1}{b x^{7/2} \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {11 \left (-\frac {7 c \left (-\frac {3 c \left (\frac {2 c x \sqrt {b+c x^2} \left (\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{2 c^{3/4} \sqrt {b+c x^2}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{b \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{b x^{3/2}}\right )}{5 b}-\frac {2 \sqrt {b x^2+c x^4}}{5 b x^{7/2}}\right )}{9 b}-\frac {2 \sqrt {b x^2+c x^4}}{9 b x^{11/2}}\right )}{2 b}+\frac {1}{b x^{7/2} \sqrt {b x^2+c x^4}}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {11 \left (-\frac {7 c \left (-\frac {3 c \left (\frac {2 c x \sqrt {b+c x^2} \left (\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{2 c^{3/4} \sqrt {b+c x^2}}-\frac {\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt [4]{c} \sqrt {b+c x^2}}-\frac {\sqrt {x} \sqrt {b+c x^2}}{\sqrt {b}+\sqrt {c} x}}{\sqrt {c}}\right )}{b \sqrt {b x^2+c x^4}}-\frac {2 \sqrt {b x^2+c x^4}}{b x^{3/2}}\right )}{5 b}-\frac {2 \sqrt {b x^2+c x^4}}{5 b x^{7/2}}\right )}{9 b}-\frac {2 \sqrt {b x^2+c x^4}}{9 b x^{11/2}}\right )}{2 b}+\frac {1}{b x^{7/2} \sqrt {b x^2+c x^4}}\)

Input:

Int[1/(x^(5/2)*(b*x^2 + c*x^4)^(3/2)),x]
 

Output:

1/(b*x^(7/2)*Sqrt[b*x^2 + c*x^4]) + (11*((-2*Sqrt[b*x^2 + c*x^4])/(9*b*x^( 
11/2)) - (7*c*((-2*Sqrt[b*x^2 + c*x^4])/(5*b*x^(7/2)) - (3*c*((-2*Sqrt[b*x 
^2 + c*x^4])/(b*x^(3/2)) + (2*c*x*Sqrt[b + c*x^2]*(-((-((Sqrt[x]*Sqrt[b + 
c*x^2])/(Sqrt[b] + Sqrt[c]*x)) + (b^(1/4)*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + 
c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/ 
4)], 1/2])/(c^(1/4)*Sqrt[b + c*x^2]))/Sqrt[c]) + (b^(1/4)*(Sqrt[b] + Sqrt[ 
c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4 
)*Sqrt[x])/b^(1/4)], 1/2])/(2*c^(3/4)*Sqrt[b + c*x^2])))/(b*Sqrt[b*x^2 + c 
*x^4])))/(5*b)))/(9*b)))/(2*b)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1428
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp 
[(-d)*(d*x)^(m - 1)*((b*x^2 + c*x^4)^(p + 1)/(2*b*(p + 1))), x] + Simp[d^2* 
((m + 4*p + 3)/(2*b*(p + 1)))   Int[(d*x)^(m - 2)*(b*x^2 + c*x^4)^(p + 1), 
x], x] /; FreeQ[{b, c, d, m, p}, x] &&  !IntegerQ[p] && LtQ[p, -1]
 

rule 1430
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp 
[d*(d*x)^(m - 1)*((b*x^2 + c*x^4)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[c*( 
(m + 4*p + 3)/(b*d^2*(m + 2*p + 1)))   Int[(d*x)^(m + 2)*(b*x^2 + c*x^4)^p, 
 x], x] /; FreeQ[{b, c, d, m, p}, x] &&  !IntegerQ[p] && LtQ[m + 2*p + 1, 0 
]
 

rule 1431
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp 
[(b*x^2 + c*x^4)^p/((d*x)^(2*p)*(b + c*x^2)^p)   Int[(d*x)^(m + 2*p)*(b + c 
*x^2)^p, x], x] /; FreeQ[{b, c, d, m, p}, x] &&  !IntegerQ[p]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 
Maple [A] (verified)

Time = 2.00 (sec) , antiderivative size = 237, normalized size of antiderivative = 0.68

method result size
default \(\frac {\left (c \,x^{2}+b \right ) \left (462 \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) b \,c^{2} x^{4}-231 \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) b \,c^{2} x^{4}-462 c^{3} x^{6}-308 b \,c^{2} x^{4}+44 b^{2} c \,x^{2}-20 b^{3}\right )}{90 \left (c \,x^{4}+b \,x^{2}\right )^{\frac {3}{2}} x^{\frac {3}{2}} b^{4}}\) \(237\)
risch \(-\frac {2 \left (c \,x^{2}+b \right ) \left (93 c^{2} x^{4}-16 b c \,x^{2}+5 b^{2}\right )}{45 b^{4} x^{\frac {7}{2}} \sqrt {x^{2} \left (c \,x^{2}+b \right )}}+\frac {c^{3} \left (\frac {31 \sqrt {-b c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, \left (-\frac {2 \sqrt {-b c}\, \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}+\frac {\sqrt {-b c}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}\right )}{c \sqrt {c \,x^{3}+b x}}-15 b \left (\frac {x^{2}}{b \sqrt {\left (x^{2}+\frac {b}{c}\right ) c x}}-\frac {\sqrt {-b c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, \left (-\frac {2 \sqrt {-b c}\, \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}+\frac {\sqrt {-b c}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}\right )}{2 b c \sqrt {c \,x^{3}+b x}}\right )\right ) \sqrt {x}\, \sqrt {x \left (c \,x^{2}+b \right )}}{15 b^{4} \sqrt {x^{2} \left (c \,x^{2}+b \right )}}\) \(431\)

Input:

int(1/x^(5/2)/(c*x^4+b*x^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/90/(c*x^4+b*x^2)^(3/2)/x^(3/2)*(c*x^2+b)*(462*((c*x+(-b*c)^(1/2))/(-b*c) 
^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-c/(-b*c)^ 
(1/2)*x)^(1/2)*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/ 
2))*b*c^2*x^4-231*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+( 
-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-c/(-b*c)^(1/2)*x)^(1/2)*EllipticF(((c*x 
+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*b*c^2*x^4-462*c^3*x^6-308* 
b*c^2*x^4+44*b^2*c*x^2-20*b^3)/b^4
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.31 \[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )^{3/2}} \, dx=-\frac {231 \, {\left (c^{3} x^{8} + b c^{2} x^{6}\right )} \sqrt {c} {\rm weierstrassZeta}\left (-\frac {4 \, b}{c}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, b}{c}, 0, x\right )\right ) + {\left (231 \, c^{3} x^{6} + 154 \, b c^{2} x^{4} - 22 \, b^{2} c x^{2} + 10 \, b^{3}\right )} \sqrt {c x^{4} + b x^{2}} \sqrt {x}}{45 \, {\left (b^{4} c x^{8} + b^{5} x^{6}\right )}} \] Input:

integrate(1/x^(5/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="fricas")
 

Output:

-1/45*(231*(c^3*x^8 + b*c^2*x^6)*sqrt(c)*weierstrassZeta(-4*b/c, 0, weiers 
trassPInverse(-4*b/c, 0, x)) + (231*c^3*x^6 + 154*b*c^2*x^4 - 22*b^2*c*x^2 
 + 10*b^3)*sqrt(c*x^4 + b*x^2)*sqrt(x))/(b^4*c*x^8 + b^5*x^6)
 

Sympy [F]

\[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {1}{x^{\frac {5}{2}} \left (x^{2} \left (b + c x^{2}\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/x**(5/2)/(c*x**4+b*x**2)**(3/2),x)
 

Output:

Integral(1/(x**(5/2)*(x**2*(b + c*x**2))**(3/2)), x)
 

Maxima [F]

\[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (c x^{4} + b x^{2}\right )}^{\frac {3}{2}} x^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/x^(5/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/((c*x^4 + b*x^2)^(3/2)*x^(5/2)), x)
 

Giac [F]

\[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (c x^{4} + b x^{2}\right )}^{\frac {3}{2}} x^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/x^(5/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="giac")
 

Output:

integrate(1/((c*x^4 + b*x^2)^(3/2)*x^(5/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {1}{x^{5/2}\,{\left (c\,x^4+b\,x^2\right )}^{3/2}} \,d x \] Input:

int(1/(x^(5/2)*(b*x^2 + c*x^4)^(3/2)),x)
                                                                                    
                                                                                    
 

Output:

int(1/(x^(5/2)*(b*x^2 + c*x^4)^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{x^{5/2} \left (b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {\sqrt {x}\, \sqrt {c \,x^{2}+b}}{c^{2} x^{10}+2 b c \,x^{8}+b^{2} x^{6}}d x \] Input:

int(1/x^(5/2)/(c*x^4+b*x^2)^(3/2),x)
 

Output:

int((sqrt(x)*sqrt(b + c*x**2))/(b**2*x**6 + 2*b*c*x**8 + c**2*x**10),x)