\(\int \frac {1}{(d x)^{5/2} (a^2+2 a b x^2+b^2 x^4)} \, dx\) [454]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 223 \[ \int \frac {1}{(d x)^{5/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=-\frac {7}{6 a^2 d (d x)^{3/2}}+\frac {1}{2 a d (d x)^{3/2} \left (a+b x^2\right )}+\frac {7 b^{3/4} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{11/4} d^{5/2}}-\frac {7 b^{3/4} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{11/4} d^{5/2}}-\frac {7 b^{3/4} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}}{\sqrt {d} \left (\sqrt {a}+\sqrt {b} x\right )}\right )}{4 \sqrt {2} a^{11/4} d^{5/2}} \] Output:

-7/6/a^2/d/(d*x)^(3/2)+1/2/a/d/(d*x)^(3/2)/(b*x^2+a)+7/8*b^(3/4)*arctan(1- 
2^(1/2)*b^(1/4)*(d*x)^(1/2)/a^(1/4)/d^(1/2))*2^(1/2)/a^(11/4)/d^(5/2)-7/8* 
b^(3/4)*arctan(1+2^(1/2)*b^(1/4)*(d*x)^(1/2)/a^(1/4)/d^(1/2))*2^(1/2)/a^(1 
1/4)/d^(5/2)-7/8*b^(3/4)*arctanh(2^(1/2)*a^(1/4)*b^(1/4)*(d*x)^(1/2)/d^(1/ 
2)/(a^(1/2)+b^(1/2)*x))*2^(1/2)/a^(11/4)/d^(5/2)
 

Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 165, normalized size of antiderivative = 0.74 \[ \int \frac {1}{(d x)^{5/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=\frac {x \left (-4 a^{3/4} \left (4 a+7 b x^2\right )+21 \sqrt {2} b^{3/4} x^{3/2} \left (a+b x^2\right ) \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )-21 \sqrt {2} b^{3/4} x^{3/2} \left (a+b x^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )\right )}{24 a^{11/4} (d x)^{5/2} \left (a+b x^2\right )} \] Input:

Integrate[1/((d*x)^(5/2)*(a^2 + 2*a*b*x^2 + b^2*x^4)),x]
 

Output:

(x*(-4*a^(3/4)*(4*a + 7*b*x^2) + 21*Sqrt[2]*b^(3/4)*x^(3/2)*(a + b*x^2)*Ar 
cTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])] - 21*Sqrt[2] 
*b^(3/4)*x^(3/2)*(a + b*x^2)*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sq 
rt[a] + Sqrt[b]*x)]))/(24*a^(11/4)*(d*x)^(5/2)*(a + b*x^2))
 

Rubi [A] (verified)

Time = 0.90 (sec) , antiderivative size = 329, normalized size of antiderivative = 1.48, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {1380, 27, 253, 264, 266, 755, 27, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(d x)^{5/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx\)

\(\Big \downarrow \) 1380

\(\displaystyle b^2 \int \frac {1}{b^2 (d x)^{5/2} \left (b x^2+a\right )^2}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {1}{(d x)^{5/2} \left (a+b x^2\right )^2}dx\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {7 \int \frac {1}{(d x)^{5/2} \left (b x^2+a\right )}dx}{4 a}+\frac {1}{2 a d (d x)^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 264

\(\displaystyle \frac {7 \left (-\frac {b \int \frac {1}{\sqrt {d x} \left (b x^2+a\right )}dx}{a d^2}-\frac {2}{3 a d (d x)^{3/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {7 \left (-\frac {2 b \int \frac {1}{b x^2+a}d\sqrt {d x}}{a d^3}-\frac {2}{3 a d (d x)^{3/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {\int \frac {d^2 \left (\sqrt {a} d-\sqrt {b} d x\right )}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a} d}+\frac {\int \frac {d^2 \left (\sqrt {b} x d+\sqrt {a} d\right )}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a} d}\right )}{a d^3}-\frac {2}{3 a d (d x)^{3/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \int \frac {\sqrt {b} x d+\sqrt {a} d}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}\right )}{a d^3}-\frac {2}{3 a d (d x)^{3/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 \sqrt {a}}\right )}{a d^3}-\frac {2}{3 a d (d x)^{3/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\int \frac {1}{-d x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int \frac {1}{-d x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{a d^3}-\frac {2}{3 a d (d x)^{3/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{a d^3}-\frac {2}{3 a d (d x)^{3/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {d \left (-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{a d^3}-\frac {2}{3 a d (d x)^{3/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {d \left (\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}+\frac {\int \frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{a d^3}-\frac {2}{3 a d (d x)^{3/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {d \left (\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b} \sqrt {d}}+\frac {\int \frac {\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt [4]{a} \sqrt {b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{a d^3}-\frac {2}{3 a d (d x)^{3/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{3/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {7 \left (-\frac {2 b \left (\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{a d^3}-\frac {2}{3 a d (d x)^{3/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{3/2} \left (a+b x^2\right )}\)

Input:

Int[1/((d*x)^(5/2)*(a^2 + 2*a*b*x^2 + b^2*x^4)),x]
 

Output:

1/(2*a*d*(d*x)^(3/2)*(a + b*x^2)) + (7*(-2/(3*a*d*(d*x)^(3/2)) - (2*b*((d* 
(-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2]*a^(1 
/4)*b^(1/4)*Sqrt[d])) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sq 
rt[d])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d])))/(2*Sqrt[a]) + (d*(-1/2*Log[Sqr 
t[a]*d + Sqrt[b]*d*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]*Sqrt[d*x]]/(Sqrt[2] 
*a^(1/4)*b^(1/4)*Sqrt[d]) + Log[Sqrt[a]*d + Sqrt[b]*d*x + Sqrt[2]*a^(1/4)* 
b^(1/4)*Sqrt[d]*Sqrt[d*x]]/(2*Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d])))/(2*Sqrt[a 
])))/(a*d^3)))/(4*a)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 264
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^( 
m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + 2*p + 3)/(a*c 
^2*(m + 1)))   Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, p 
}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1380
Int[(u_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> S 
imp[1/c^p   Int[u*(b/2 + c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n, p}, x] 
&& EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.46 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.86

method result size
risch \(-\frac {2}{3 a^{2} x \sqrt {d x}\, d^{2}}-\frac {2 b \left (\frac {\sqrt {d x}}{4 b \,d^{2} x^{2}+4 a \,d^{2}}+\frac {7 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a \,d^{2}}\right )}{a^{2} d}\) \(192\)
derivativedivides \(2 d^{3} \left (-\frac {1}{3 a^{2} d^{4} \left (d x \right )^{\frac {3}{2}}}-\frac {b \left (\frac {\sqrt {d x}}{4 b \,d^{2} x^{2}+4 a \,d^{2}}+\frac {7 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a \,d^{2}}\right )}{a^{2} d^{4}}\right )\) \(194\)
default \(2 d^{3} \left (-\frac {1}{3 a^{2} d^{4} \left (d x \right )^{\frac {3}{2}}}-\frac {b \left (\frac {\sqrt {d x}}{4 b \,d^{2} x^{2}+4 a \,d^{2}}+\frac {7 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a \,d^{2}}\right )}{a^{2} d^{4}}\right )\) \(194\)
pseudoelliptic \(d^{3} \left (-\frac {2}{3 a^{2} d^{4} \left (d x \right )^{\frac {3}{2}}}-\frac {\sqrt {d x}\, b}{2 d^{6} \left (b \,x^{2}+a \right ) a^{2}}-\frac {7 \ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right ) \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, b}{16 a^{3} d^{6}}-\frac {7 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right ) \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, b}{8 a^{3} d^{6}}-\frac {7 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right ) \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, b}{8 a^{3} d^{6}}\right )\) \(223\)

Input:

int(1/(d*x)^(5/2)/(b^2*x^4+2*a*b*x^2+a^2),x,method=_RETURNVERBOSE)
 

Output:

-2/3/a^2/x/(d*x)^(1/2)/d^2-2/a^2*b/d*(1/4*(d*x)^(1/2)/(b*d^2*x^2+a*d^2)+7/ 
32*(a*d^2/b)^(1/4)/a/d^2*2^(1/2)*(ln((d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1 
/2)+(a*d^2/b)^(1/2))/(d*x-(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1 
/2)))+2*arctan(2^(1/2)/(a*d^2/b)^(1/4)*(d*x)^(1/2)+1)+2*arctan(2^(1/2)/(a* 
d^2/b)^(1/4)*(d*x)^(1/2)-1)))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.13 (sec) , antiderivative size = 320, normalized size of antiderivative = 1.43 \[ \int \frac {1}{(d x)^{5/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=-\frac {21 \, {\left (a^{2} b d^{3} x^{4} + a^{3} d^{3} x^{2}\right )} \left (-\frac {b^{3}}{a^{11} d^{10}}\right )^{\frac {1}{4}} \log \left (7 \, a^{3} d^{3} \left (-\frac {b^{3}}{a^{11} d^{10}}\right )^{\frac {1}{4}} + 7 \, \sqrt {d x} b\right ) + 21 \, {\left (i \, a^{2} b d^{3} x^{4} + i \, a^{3} d^{3} x^{2}\right )} \left (-\frac {b^{3}}{a^{11} d^{10}}\right )^{\frac {1}{4}} \log \left (7 i \, a^{3} d^{3} \left (-\frac {b^{3}}{a^{11} d^{10}}\right )^{\frac {1}{4}} + 7 \, \sqrt {d x} b\right ) + 21 \, {\left (-i \, a^{2} b d^{3} x^{4} - i \, a^{3} d^{3} x^{2}\right )} \left (-\frac {b^{3}}{a^{11} d^{10}}\right )^{\frac {1}{4}} \log \left (-7 i \, a^{3} d^{3} \left (-\frac {b^{3}}{a^{11} d^{10}}\right )^{\frac {1}{4}} + 7 \, \sqrt {d x} b\right ) - 21 \, {\left (a^{2} b d^{3} x^{4} + a^{3} d^{3} x^{2}\right )} \left (-\frac {b^{3}}{a^{11} d^{10}}\right )^{\frac {1}{4}} \log \left (-7 \, a^{3} d^{3} \left (-\frac {b^{3}}{a^{11} d^{10}}\right )^{\frac {1}{4}} + 7 \, \sqrt {d x} b\right ) + 4 \, {\left (7 \, b x^{2} + 4 \, a\right )} \sqrt {d x}}{24 \, {\left (a^{2} b d^{3} x^{4} + a^{3} d^{3} x^{2}\right )}} \] Input:

integrate(1/(d*x)^(5/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="fricas")
 

Output:

-1/24*(21*(a^2*b*d^3*x^4 + a^3*d^3*x^2)*(-b^3/(a^11*d^10))^(1/4)*log(7*a^3 
*d^3*(-b^3/(a^11*d^10))^(1/4) + 7*sqrt(d*x)*b) + 21*(I*a^2*b*d^3*x^4 + I*a 
^3*d^3*x^2)*(-b^3/(a^11*d^10))^(1/4)*log(7*I*a^3*d^3*(-b^3/(a^11*d^10))^(1 
/4) + 7*sqrt(d*x)*b) + 21*(-I*a^2*b*d^3*x^4 - I*a^3*d^3*x^2)*(-b^3/(a^11*d 
^10))^(1/4)*log(-7*I*a^3*d^3*(-b^3/(a^11*d^10))^(1/4) + 7*sqrt(d*x)*b) - 2 
1*(a^2*b*d^3*x^4 + a^3*d^3*x^2)*(-b^3/(a^11*d^10))^(1/4)*log(-7*a^3*d^3*(- 
b^3/(a^11*d^10))^(1/4) + 7*sqrt(d*x)*b) + 4*(7*b*x^2 + 4*a)*sqrt(d*x))/(a^ 
2*b*d^3*x^4 + a^3*d^3*x^2)
 

Sympy [F]

\[ \int \frac {1}{(d x)^{5/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=\int \frac {1}{\left (d x\right )^{\frac {5}{2}} \left (a + b x^{2}\right )^{2}}\, dx \] Input:

integrate(1/(d*x)**(5/2)/(b**2*x**4+2*a*b*x**2+a**2),x)
 

Output:

Integral(1/((d*x)**(5/2)*(a + b*x**2)**2), x)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 275, normalized size of antiderivative = 1.23 \[ \int \frac {1}{(d x)^{5/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=-\frac {\frac {8 \, {\left (7 \, b d^{2} x^{2} + 4 \, a d^{2}\right )}}{\left (d x\right )^{\frac {7}{2}} a^{2} b + \left (d x\right )^{\frac {3}{2}} a^{3} d^{2}} + \frac {21 \, {\left (\frac {\sqrt {2} b^{\frac {3}{4}} \log \left (\sqrt {b} d x + \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {3}{4}}} - \frac {\sqrt {2} b^{\frac {3}{4}} \log \left (\sqrt {b} d x - \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {3}{4}}} + \frac {2 \, \sqrt {2} b \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {a} d} + \frac {2 \, \sqrt {2} b \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {a} d}\right )}}{a^{2}}}{48 \, d} \] Input:

integrate(1/(d*x)^(5/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="maxima")
 

Output:

-1/48*(8*(7*b*d^2*x^2 + 4*a*d^2)/((d*x)^(7/2)*a^2*b + (d*x)^(3/2)*a^3*d^2) 
 + 21*(sqrt(2)*b^(3/4)*log(sqrt(b)*d*x + sqrt(2)*(a*d^2)^(1/4)*sqrt(d*x)*b 
^(1/4) + sqrt(a)*d)/(a*d^2)^(3/4) - sqrt(2)*b^(3/4)*log(sqrt(b)*d*x - sqrt 
(2)*(a*d^2)^(1/4)*sqrt(d*x)*b^(1/4) + sqrt(a)*d)/(a*d^2)^(3/4) + 2*sqrt(2) 
*b*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4) + 2*sqrt(d*x)*sqrt(b) 
)/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d)*sqrt(a)*d) + 2*sqrt(2) 
*b*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4) - 2*sqrt(d*x)*sqrt(b 
))/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d)*sqrt(a)*d))/a^2)/d
 

Giac [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 276, normalized size of antiderivative = 1.24 \[ \int \frac {1}{(d x)^{5/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=-\frac {\sqrt {d x} b}{2 \, {\left (b d^{2} x^{2} + a d^{2}\right )} a^{2} d} - \frac {7 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{3} d^{3}} - \frac {7 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{3} d^{3}} - \frac {7 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \log \left (d x + \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{16 \, a^{3} d^{3}} + \frac {7 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \log \left (d x - \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{16 \, a^{3} d^{3}} - \frac {2}{3 \, \sqrt {d x} a^{2} d^{2} x} \] Input:

integrate(1/(d*x)^(5/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="giac")
 

Output:

-1/2*sqrt(d*x)*b/((b*d^2*x^2 + a*d^2)*a^2*d) - 7/8*sqrt(2)*(a*b^3*d^2)^(1/ 
4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1 
/4))/(a^3*d^3) - 7/8*sqrt(2)*(a*b^3*d^2)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2 
)*(a*d^2/b)^(1/4) - 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^3*d^3) - 7/16*sqrt(2) 
*(a*b^3*d^2)^(1/4)*log(d*x + sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^ 
2/b))/(a^3*d^3) + 7/16*sqrt(2)*(a*b^3*d^2)^(1/4)*log(d*x - sqrt(2)*(a*d^2/ 
b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^3*d^3) - 2/3/(sqrt(d*x)*a^2*d^2*x)
 

Mupad [B] (verification not implemented)

Time = 17.75 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.46 \[ \int \frac {1}{(d x)^{5/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=\frac {7\,{\left (-b\right )}^{3/4}\,\mathrm {atan}\left (\frac {{\left (-b\right )}^{1/4}\,\sqrt {d\,x}}{a^{1/4}\,\sqrt {d}}\right )}{4\,a^{11/4}\,d^{5/2}}-\frac {\frac {2\,d}{3\,a}+\frac {7\,b\,d\,x^2}{6\,a^2}}{b\,{\left (d\,x\right )}^{7/2}+a\,d^2\,{\left (d\,x\right )}^{3/2}}+\frac {7\,{\left (-b\right )}^{3/4}\,\mathrm {atanh}\left (\frac {{\left (-b\right )}^{1/4}\,\sqrt {d\,x}}{a^{1/4}\,\sqrt {d}}\right )}{4\,a^{11/4}\,d^{5/2}} \] Input:

int(1/((d*x)^(5/2)*(a^2 + b^2*x^4 + 2*a*b*x^2)),x)
 

Output:

(7*(-b)^(3/4)*atan(((-b)^(1/4)*(d*x)^(1/2))/(a^(1/4)*d^(1/2))))/(4*a^(11/4 
)*d^(5/2)) - ((2*d)/(3*a) + (7*b*d*x^2)/(6*a^2))/(b*(d*x)^(7/2) + a*d^2*(d 
*x)^(3/2)) + (7*(-b)^(3/4)*atanh(((-b)^(1/4)*(d*x)^(1/2))/(a^(1/4)*d^(1/2) 
)))/(4*a^(11/4)*d^(5/2))
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 341, normalized size of antiderivative = 1.53 \[ \int \frac {1}{(d x)^{5/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=\frac {\sqrt {d}\, \left (42 \sqrt {x}\, b^{\frac {3}{4}} a^{\frac {5}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x +42 \sqrt {x}\, b^{\frac {7}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x^{3}-42 \sqrt {x}\, b^{\frac {3}{4}} a^{\frac {5}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x -42 \sqrt {x}\, b^{\frac {7}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x^{3}+21 \sqrt {x}\, b^{\frac {3}{4}} a^{\frac {5}{4}} \sqrt {2}\, \mathrm {log}\left (-\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right ) x +21 \sqrt {x}\, b^{\frac {7}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (-\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right ) x^{3}-21 \sqrt {x}\, b^{\frac {3}{4}} a^{\frac {5}{4}} \sqrt {2}\, \mathrm {log}\left (\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right ) x -21 \sqrt {x}\, b^{\frac {7}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right ) x^{3}-32 a^{2}-56 a b \,x^{2}\right )}{48 \sqrt {x}\, a^{3} d^{3} x \left (b \,x^{2}+a \right )} \] Input:

int(1/(d*x)^(5/2)/(b^2*x^4+2*a*b*x^2+a^2),x)
 

Output:

(sqrt(d)*(42*sqrt(x)*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqr 
t(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a*x + 42*sqrt(x)*b* 
*(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b 
))/(b**(1/4)*a**(1/4)*sqrt(2)))*b*x**3 - 42*sqrt(x)*b**(3/4)*a**(1/4)*sqrt 
(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4 
)*sqrt(2)))*a*x - 42*sqrt(x)*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**( 
1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*b*x**3 + 21 
*sqrt(x)*b**(3/4)*a**(1/4)*sqrt(2)*log( - sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2 
) + sqrt(a) + sqrt(b)*x)*a*x + 21*sqrt(x)*b**(3/4)*a**(1/4)*sqrt(2)*log( - 
 sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*b*x**3 - 21*sqrt 
(x)*b**(3/4)*a**(1/4)*sqrt(2)*log(sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt 
(a) + sqrt(b)*x)*a*x - 21*sqrt(x)*b**(3/4)*a**(1/4)*sqrt(2)*log(sqrt(x)*b* 
*(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*b*x**3 - 32*a**2 - 56*a*b*x 
**2))/(48*sqrt(x)*a**3*d**3*x*(a + b*x**2))