\(\int \frac {(d x)^{15/2}}{(a^2+2 a b x^2+b^2 x^4)^{5/2}} \, dx\) [654]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 448 \[ \int \frac {(d x)^{15/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{5/2}} \, dx=-\frac {195 d^7 \sqrt {d x}}{1024 b^4 \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^3 \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {13 d^3 (d x)^{9/2}}{96 b^2 \left (a+b x^2\right )^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {39 d^5 (d x)^{5/2}}{256 b^3 \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {195 d^{15/2} \left (a+b x^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{2048 \sqrt {2} a^{3/4} b^{17/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {195 d^{15/2} \left (a+b x^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{2048 \sqrt {2} a^{3/4} b^{17/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {195 d^{15/2} \left (a+b x^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}}{\sqrt {d} \left (\sqrt {a}+\sqrt {b} x\right )}\right )}{2048 \sqrt {2} a^{3/4} b^{17/4} \sqrt {a^2+2 a b x^2+b^2 x^4}} \] Output:

-195/1024*d^7*(d*x)^(1/2)/b^4/((b*x^2+a)^2)^(1/2)-1/8*d*(d*x)^(13/2)/b/(b* 
x^2+a)^3/((b*x^2+a)^2)^(1/2)-13/96*d^3*(d*x)^(9/2)/b^2/(b*x^2+a)^2/((b*x^2 
+a)^2)^(1/2)-39/256*d^5*(d*x)^(5/2)/b^3/(b*x^2+a)/((b*x^2+a)^2)^(1/2)-195/ 
4096*d^(15/2)*(b*x^2+a)*arctan(1-2^(1/2)*b^(1/4)*(d*x)^(1/2)/a^(1/4)/d^(1/ 
2))*2^(1/2)/a^(3/4)/b^(17/4)/((b*x^2+a)^2)^(1/2)+195/4096*d^(15/2)*(b*x^2+ 
a)*arctan(1+2^(1/2)*b^(1/4)*(d*x)^(1/2)/a^(1/4)/d^(1/2))*2^(1/2)/a^(3/4)/b 
^(17/4)/((b*x^2+a)^2)^(1/2)+195/4096*d^(15/2)*(b*x^2+a)*arctanh(2^(1/2)*a^ 
(1/4)*b^(1/4)*(d*x)^(1/2)/d^(1/2)/(a^(1/2)+b^(1/2)*x))*2^(1/2)/a^(3/4)/b^( 
17/4)/((b*x^2+a)^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.67 (sec) , antiderivative size = 201, normalized size of antiderivative = 0.45 \[ \int \frac {(d x)^{15/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{5/2}} \, dx=\frac {(d x)^{15/2} \left (a+b x^2\right ) \left (-4 \sqrt [4]{b} \sqrt {x} \left (585 a^3+2223 a^2 b x^2+3107 a b^2 x^4+1853 b^3 x^6\right )-\frac {585 \sqrt {2} \left (a+b x^2\right )^4 \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )}{a^{3/4}}+\frac {585 \sqrt {2} \left (a+b x^2\right )^4 \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{a^{3/4}}\right )}{12288 b^{17/4} x^{15/2} \left (\left (a+b x^2\right )^2\right )^{5/2}} \] Input:

Integrate[(d*x)^(15/2)/(a^2 + 2*a*b*x^2 + b^2*x^4)^(5/2),x]
 

Output:

((d*x)^(15/2)*(a + b*x^2)*(-4*b^(1/4)*Sqrt[x]*(585*a^3 + 2223*a^2*b*x^2 + 
3107*a*b^2*x^4 + 1853*b^3*x^6) - (585*Sqrt[2]*(a + b*x^2)^4*ArcTan[(Sqrt[a 
] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])])/a^(3/4) + (585*Sqrt[2]* 
(a + b*x^2)^4*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b] 
*x)])/a^(3/4)))/(12288*b^(17/4)*x^(15/2)*((a + b*x^2)^2)^(5/2))
 

Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 436, normalized size of antiderivative = 0.97, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.533, Rules used = {1384, 27, 252, 252, 252, 252, 266, 755, 27, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d x)^{15/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 1384

\(\displaystyle \frac {b^5 \left (a+b x^2\right ) \int \frac {(d x)^{15/2}}{b^5 \left (b x^2+a\right )^5}dx}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a+b x^2\right ) \int \frac {(d x)^{15/2}}{\left (b x^2+a\right )^5}dx}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {13 d^2 \int \frac {(d x)^{11/2}}{\left (b x^2+a\right )^4}dx}{16 b}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^4}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {13 d^2 \left (\frac {3 d^2 \int \frac {(d x)^{7/2}}{\left (b x^2+a\right )^3}dx}{4 b}-\frac {d (d x)^{9/2}}{6 b \left (a+b x^2\right )^3}\right )}{16 b}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^4}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {13 d^2 \left (\frac {3 d^2 \left (\frac {5 d^2 \int \frac {(d x)^{3/2}}{\left (b x^2+a\right )^2}dx}{8 b}-\frac {d (d x)^{5/2}}{4 b \left (a+b x^2\right )^2}\right )}{4 b}-\frac {d (d x)^{9/2}}{6 b \left (a+b x^2\right )^3}\right )}{16 b}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^4}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {13 d^2 \left (\frac {3 d^2 \left (\frac {5 d^2 \left (\frac {d^2 \int \frac {1}{\sqrt {d x} \left (b x^2+a\right )}dx}{4 b}-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}\right )}{8 b}-\frac {d (d x)^{5/2}}{4 b \left (a+b x^2\right )^2}\right )}{4 b}-\frac {d (d x)^{9/2}}{6 b \left (a+b x^2\right )^3}\right )}{16 b}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^4}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {13 d^2 \left (\frac {3 d^2 \left (\frac {5 d^2 \left (\frac {d \int \frac {1}{b x^2+a}d\sqrt {d x}}{2 b}-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}\right )}{8 b}-\frac {d (d x)^{5/2}}{4 b \left (a+b x^2\right )^2}\right )}{4 b}-\frac {d (d x)^{9/2}}{6 b \left (a+b x^2\right )^3}\right )}{16 b}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^4}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {13 d^2 \left (\frac {3 d^2 \left (\frac {5 d^2 \left (\frac {d \left (\frac {\int \frac {d^2 \left (\sqrt {a} d-\sqrt {b} d x\right )}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a} d}+\frac {\int \frac {d^2 \left (\sqrt {b} x d+\sqrt {a} d\right )}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a} d}\right )}{2 b}-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}\right )}{8 b}-\frac {d (d x)^{5/2}}{4 b \left (a+b x^2\right )^2}\right )}{4 b}-\frac {d (d x)^{9/2}}{6 b \left (a+b x^2\right )^3}\right )}{16 b}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^4}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {13 d^2 \left (\frac {3 d^2 \left (\frac {5 d^2 \left (\frac {d \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \int \frac {\sqrt {b} x d+\sqrt {a} d}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}\right )}{2 b}-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}\right )}{8 b}-\frac {d (d x)^{5/2}}{4 b \left (a+b x^2\right )^2}\right )}{4 b}-\frac {d (d x)^{9/2}}{6 b \left (a+b x^2\right )^3}\right )}{16 b}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^4}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {13 d^2 \left (\frac {3 d^2 \left (\frac {5 d^2 \left (\frac {d \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 \sqrt {a}}\right )}{2 b}-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}\right )}{8 b}-\frac {d (d x)^{5/2}}{4 b \left (a+b x^2\right )^2}\right )}{4 b}-\frac {d (d x)^{9/2}}{6 b \left (a+b x^2\right )^3}\right )}{16 b}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^4}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {13 d^2 \left (\frac {3 d^2 \left (\frac {5 d^2 \left (\frac {d \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\int \frac {1}{-d x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int \frac {1}{-d x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 b}-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}\right )}{8 b}-\frac {d (d x)^{5/2}}{4 b \left (a+b x^2\right )^2}\right )}{4 b}-\frac {d (d x)^{9/2}}{6 b \left (a+b x^2\right )^3}\right )}{16 b}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^4}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {13 d^2 \left (\frac {3 d^2 \left (\frac {5 d^2 \left (\frac {d \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 b}-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}\right )}{8 b}-\frac {d (d x)^{5/2}}{4 b \left (a+b x^2\right )^2}\right )}{4 b}-\frac {d (d x)^{9/2}}{6 b \left (a+b x^2\right )^3}\right )}{16 b}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^4}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {13 d^2 \left (\frac {3 d^2 \left (\frac {5 d^2 \left (\frac {d \left (\frac {d \left (-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 b}-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}\right )}{8 b}-\frac {d (d x)^{5/2}}{4 b \left (a+b x^2\right )^2}\right )}{4 b}-\frac {d (d x)^{9/2}}{6 b \left (a+b x^2\right )^3}\right )}{16 b}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^4}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {13 d^2 \left (\frac {3 d^2 \left (\frac {5 d^2 \left (\frac {d \left (\frac {d \left (\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}+\frac {\int \frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 b}-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}\right )}{8 b}-\frac {d (d x)^{5/2}}{4 b \left (a+b x^2\right )^2}\right )}{4 b}-\frac {d (d x)^{9/2}}{6 b \left (a+b x^2\right )^3}\right )}{16 b}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^4}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {13 d^2 \left (\frac {3 d^2 \left (\frac {5 d^2 \left (\frac {d \left (\frac {d \left (\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b} \sqrt {d}}+\frac {\int \frac {\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt [4]{a} \sqrt {b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 b}-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}\right )}{8 b}-\frac {d (d x)^{5/2}}{4 b \left (a+b x^2\right )^2}\right )}{4 b}-\frac {d (d x)^{9/2}}{6 b \left (a+b x^2\right )^3}\right )}{16 b}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^4}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {13 d^2 \left (\frac {3 d^2 \left (\frac {5 d^2 \left (\frac {d \left (\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 b}-\frac {d \sqrt {d x}}{2 b \left (a+b x^2\right )}\right )}{8 b}-\frac {d (d x)^{5/2}}{4 b \left (a+b x^2\right )^2}\right )}{4 b}-\frac {d (d x)^{9/2}}{6 b \left (a+b x^2\right )^3}\right )}{16 b}-\frac {d (d x)^{13/2}}{8 b \left (a+b x^2\right )^4}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

Input:

Int[(d*x)^(15/2)/(a^2 + 2*a*b*x^2 + b^2*x^4)^(5/2),x]
 

Output:

((a + b*x^2)*(-1/8*(d*(d*x)^(13/2))/(b*(a + b*x^2)^4) + (13*d^2*(-1/6*(d*( 
d*x)^(9/2))/(b*(a + b*x^2)^3) + (3*d^2*(-1/4*(d*(d*x)^(5/2))/(b*(a + b*x^2 
)^2) + (5*d^2*(-1/2*(d*Sqrt[d*x])/(b*(a + b*x^2)) + (d*((d*(-(ArcTan[1 - ( 
Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqr 
t[d])) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2 
]*a^(1/4)*b^(1/4)*Sqrt[d])))/(2*Sqrt[a]) + (d*(-1/2*Log[Sqrt[a]*d + Sqrt[b 
]*d*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]*Sqrt[d*x]]/(Sqrt[2]*a^(1/4)*b^(1/4 
)*Sqrt[d]) + Log[Sqrt[a]*d + Sqrt[b]*d*x + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d] 
*Sqrt[d*x]]/(2*Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d])))/(2*Sqrt[a])))/(2*b)))/(8 
*b)))/(4*b)))/(16*b)))/Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1384
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> S 
imp[(a + b*x^n + c*x^(2*n))^FracPart[p]/(c^IntPart[p]*(b/2 + c*x^n)^(2*Frac 
Part[p]))   Int[u*(b/2 + c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n, p}, x] 
&& EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2] && NeQ[u, x^(n 
- 1)] && NeQ[u, x^(2*n - 1)] &&  !(EqQ[p, 1/2] && EqQ[u, x^(-2*n - 1)])
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1133\) vs. \(2(291)=582\).

Time = 0.15 (sec) , antiderivative size = 1134, normalized size of antiderivative = 2.53

method result size
default \(\text {Expression too large to display}\) \(1134\)

Input:

int((d*x)^(15/2)/(b^2*x^4+2*a*b*x^2+a^2)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/24576*(585*(a*d^2/b)^(1/4)*2^(1/2)*ln((d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2 
^(1/2)+(a*d^2/b)^(1/2))/(d*x-(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b) 
^(1/2)))*b^4*d^6*x^8+1170*(a*d^2/b)^(1/4)*2^(1/2)*arctan((2^(1/2)*(d*x)^(1 
/2)-(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))*b^4*d^6*x^8+1170*(a*d^2/b)^(1/4)*2^( 
1/2)*arctan((2^(1/2)*(d*x)^(1/2)+(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))*b^4*d^6 
*x^8+2340*(a*d^2/b)^(1/4)*2^(1/2)*ln((d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1 
/2)+(a*d^2/b)^(1/2))/(d*x-(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1 
/2)))*a*b^3*d^6*x^6+4680*(a*d^2/b)^(1/4)*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/ 
2)-(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))*a*b^3*d^6*x^6+4680*(a*d^2/b)^(1/4)*2^ 
(1/2)*arctan((2^(1/2)*(d*x)^(1/2)+(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))*a*b^3* 
d^6*x^6+3510*(a*d^2/b)^(1/4)*2^(1/2)*ln((d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2 
^(1/2)+(a*d^2/b)^(1/2))/(d*x-(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b) 
^(1/2)))*a^2*b^2*d^6*x^4+7020*(a*d^2/b)^(1/4)*2^(1/2)*arctan((2^(1/2)*(d*x 
)^(1/2)-(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))*a^2*b^2*d^6*x^4+7020*(a*d^2/b)^( 
1/4)*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)+(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4)) 
*a^2*b^2*d^6*x^4-14824*(d*x)^(13/2)*a*b^3+2340*(a*d^2/b)^(1/4)*2^(1/2)*ln( 
(d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2))/(d*x-(a*d^2/b)^( 
1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))*a^3*b*d^6*x^2+4680*(a*d^2/b)^(1 
/4)*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)-(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))* 
a^3*b*d^6*x^2+4680*(a*d^2/b)^(1/4)*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)+...
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 474, normalized size of antiderivative = 1.06 \[ \int \frac {(d x)^{15/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{5/2}} \, dx=\frac {585 \, {\left (b^{8} x^{8} + 4 \, a b^{7} x^{6} + 6 \, a^{2} b^{6} x^{4} + 4 \, a^{3} b^{5} x^{2} + a^{4} b^{4}\right )} \left (-\frac {d^{30}}{a^{3} b^{17}}\right )^{\frac {1}{4}} \log \left (195 \, \sqrt {d x} d^{7} + 195 \, \left (-\frac {d^{30}}{a^{3} b^{17}}\right )^{\frac {1}{4}} a b^{4}\right ) - 585 \, {\left (-i \, b^{8} x^{8} - 4 i \, a b^{7} x^{6} - 6 i \, a^{2} b^{6} x^{4} - 4 i \, a^{3} b^{5} x^{2} - i \, a^{4} b^{4}\right )} \left (-\frac {d^{30}}{a^{3} b^{17}}\right )^{\frac {1}{4}} \log \left (195 \, \sqrt {d x} d^{7} + 195 i \, \left (-\frac {d^{30}}{a^{3} b^{17}}\right )^{\frac {1}{4}} a b^{4}\right ) - 585 \, {\left (i \, b^{8} x^{8} + 4 i \, a b^{7} x^{6} + 6 i \, a^{2} b^{6} x^{4} + 4 i \, a^{3} b^{5} x^{2} + i \, a^{4} b^{4}\right )} \left (-\frac {d^{30}}{a^{3} b^{17}}\right )^{\frac {1}{4}} \log \left (195 \, \sqrt {d x} d^{7} - 195 i \, \left (-\frac {d^{30}}{a^{3} b^{17}}\right )^{\frac {1}{4}} a b^{4}\right ) - 585 \, {\left (b^{8} x^{8} + 4 \, a b^{7} x^{6} + 6 \, a^{2} b^{6} x^{4} + 4 \, a^{3} b^{5} x^{2} + a^{4} b^{4}\right )} \left (-\frac {d^{30}}{a^{3} b^{17}}\right )^{\frac {1}{4}} \log \left (195 \, \sqrt {d x} d^{7} - 195 \, \left (-\frac {d^{30}}{a^{3} b^{17}}\right )^{\frac {1}{4}} a b^{4}\right ) - 4 \, {\left (1853 \, b^{3} d^{7} x^{6} + 3107 \, a b^{2} d^{7} x^{4} + 2223 \, a^{2} b d^{7} x^{2} + 585 \, a^{3} d^{7}\right )} \sqrt {d x}}{12288 \, {\left (b^{8} x^{8} + 4 \, a b^{7} x^{6} + 6 \, a^{2} b^{6} x^{4} + 4 \, a^{3} b^{5} x^{2} + a^{4} b^{4}\right )}} \] Input:

integrate((d*x)^(15/2)/(b^2*x^4+2*a*b*x^2+a^2)^(5/2),x, algorithm="fricas" 
)
 

Output:

1/12288*(585*(b^8*x^8 + 4*a*b^7*x^6 + 6*a^2*b^6*x^4 + 4*a^3*b^5*x^2 + a^4* 
b^4)*(-d^30/(a^3*b^17))^(1/4)*log(195*sqrt(d*x)*d^7 + 195*(-d^30/(a^3*b^17 
))^(1/4)*a*b^4) - 585*(-I*b^8*x^8 - 4*I*a*b^7*x^6 - 6*I*a^2*b^6*x^4 - 4*I* 
a^3*b^5*x^2 - I*a^4*b^4)*(-d^30/(a^3*b^17))^(1/4)*log(195*sqrt(d*x)*d^7 + 
195*I*(-d^30/(a^3*b^17))^(1/4)*a*b^4) - 585*(I*b^8*x^8 + 4*I*a*b^7*x^6 + 6 
*I*a^2*b^6*x^4 + 4*I*a^3*b^5*x^2 + I*a^4*b^4)*(-d^30/(a^3*b^17))^(1/4)*log 
(195*sqrt(d*x)*d^7 - 195*I*(-d^30/(a^3*b^17))^(1/4)*a*b^4) - 585*(b^8*x^8 
+ 4*a*b^7*x^6 + 6*a^2*b^6*x^4 + 4*a^3*b^5*x^2 + a^4*b^4)*(-d^30/(a^3*b^17) 
)^(1/4)*log(195*sqrt(d*x)*d^7 - 195*(-d^30/(a^3*b^17))^(1/4)*a*b^4) - 4*(1 
853*b^3*d^7*x^6 + 3107*a*b^2*d^7*x^4 + 2223*a^2*b*d^7*x^2 + 585*a^3*d^7)*s 
qrt(d*x))/(b^8*x^8 + 4*a*b^7*x^6 + 6*a^2*b^6*x^4 + 4*a^3*b^5*x^2 + a^4*b^4 
)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(d x)^{15/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{5/2}} \, dx=\text {Timed out} \] Input:

integrate((d*x)**(15/2)/(b**2*x**4+2*a*b*x**2+a**2)**(5/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 583 vs. \(2 (291) = 582\).

Time = 0.18 (sec) , antiderivative size = 583, normalized size of antiderivative = 1.30 \[ \int \frac {(d x)^{15/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{5/2}} \, dx=\frac {195 \, d^{7} {\left (\frac {2 \, \sqrt {2} \sqrt {d} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {2 \, \sqrt {2} \sqrt {d} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {\sqrt {2} \sqrt {d} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}} - \frac {\sqrt {2} \sqrt {d} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}}\right )}}{8192 \, b^{4}} - \frac {15 \, b^{3} d^{\frac {15}{2}} x^{\frac {13}{2}} + 65 \, a b^{2} d^{\frac {15}{2}} x^{\frac {9}{2}} + 117 \, a^{2} b d^{\frac {15}{2}} x^{\frac {5}{2}} + 195 \, a^{3} d^{\frac {15}{2}} \sqrt {x}}{1024 \, {\left (b^{8} x^{8} + 4 \, a b^{7} x^{6} + 6 \, a^{2} b^{6} x^{4} + 4 \, a^{3} b^{5} x^{2} + a^{4} b^{4}\right )}} - \frac {{\left (113 \, b^{4} d^{\frac {15}{2}} x^{5} + 282 \, a b^{3} d^{\frac {15}{2}} x^{3} + 201 \, a^{2} b^{2} d^{\frac {15}{2}} x\right )} x^{\frac {11}{2}} + 2 \, {\left (63 \, a b^{3} d^{\frac {15}{2}} x^{5} + 174 \, a^{2} b^{2} d^{\frac {15}{2}} x^{3} + 143 \, a^{3} b d^{\frac {15}{2}} x\right )} x^{\frac {7}{2}} + {\left (45 \, a^{2} b^{2} d^{\frac {15}{2}} x^{5} + 130 \, a^{3} b d^{\frac {15}{2}} x^{3} + 117 \, a^{4} d^{\frac {15}{2}} x\right )} x^{\frac {3}{2}}}{192 \, {\left (a^{3} b^{6} x^{6} + 3 \, a^{4} b^{5} x^{4} + 3 \, a^{5} b^{4} x^{2} + a^{6} b^{3} + {\left (b^{9} x^{6} + 3 \, a b^{8} x^{4} + 3 \, a^{2} b^{7} x^{2} + a^{3} b^{6}\right )} x^{6} + 3 \, {\left (a b^{8} x^{6} + 3 \, a^{2} b^{7} x^{4} + 3 \, a^{3} b^{6} x^{2} + a^{4} b^{5}\right )} x^{4} + 3 \, {\left (a^{2} b^{7} x^{6} + 3 \, a^{3} b^{6} x^{4} + 3 \, a^{4} b^{5} x^{2} + a^{5} b^{4}\right )} x^{2}\right )}} \] Input:

integrate((d*x)^(15/2)/(b^2*x^4+2*a*b*x^2+a^2)^(5/2),x, algorithm="maxima" 
)
 

Output:

195/8192*d^7*(2*sqrt(2)*sqrt(d)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4 
) + 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b 
))) + 2*sqrt(2)*sqrt(d)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*s 
qrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) + s 
qrt(2)*sqrt(d)*log(sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/ 
(a^(3/4)*b^(1/4)) - sqrt(2)*sqrt(d)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + 
 sqrt(b)*x + sqrt(a))/(a^(3/4)*b^(1/4)))/b^4 - 1/1024*(15*b^3*d^(15/2)*x^( 
13/2) + 65*a*b^2*d^(15/2)*x^(9/2) + 117*a^2*b*d^(15/2)*x^(5/2) + 195*a^3*d 
^(15/2)*sqrt(x))/(b^8*x^8 + 4*a*b^7*x^6 + 6*a^2*b^6*x^4 + 4*a^3*b^5*x^2 + 
a^4*b^4) - 1/192*((113*b^4*d^(15/2)*x^5 + 282*a*b^3*d^(15/2)*x^3 + 201*a^2 
*b^2*d^(15/2)*x)*x^(11/2) + 2*(63*a*b^3*d^(15/2)*x^5 + 174*a^2*b^2*d^(15/2 
)*x^3 + 143*a^3*b*d^(15/2)*x)*x^(7/2) + (45*a^2*b^2*d^(15/2)*x^5 + 130*a^3 
*b*d^(15/2)*x^3 + 117*a^4*d^(15/2)*x)*x^(3/2))/(a^3*b^6*x^6 + 3*a^4*b^5*x^ 
4 + 3*a^5*b^4*x^2 + a^6*b^3 + (b^9*x^6 + 3*a*b^8*x^4 + 3*a^2*b^7*x^2 + a^3 
*b^6)*x^6 + 3*(a*b^8*x^6 + 3*a^2*b^7*x^4 + 3*a^3*b^6*x^2 + a^4*b^5)*x^4 + 
3*(a^2*b^7*x^6 + 3*a^3*b^6*x^4 + 3*a^4*b^5*x^2 + a^5*b^4)*x^2)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 382, normalized size of antiderivative = 0.85 \[ \int \frac {(d x)^{15/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{5/2}} \, dx=\frac {\frac {1170 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} d^{8} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a b^{5} \mathrm {sgn}\left (b x^{2} + a\right )} + \frac {1170 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} d^{8} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a b^{5} \mathrm {sgn}\left (b x^{2} + a\right )} + \frac {585 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} d^{8} \log \left (d x + \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a b^{5} \mathrm {sgn}\left (b x^{2} + a\right )} - \frac {585 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} d^{8} \log \left (d x - \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a b^{5} \mathrm {sgn}\left (b x^{2} + a\right )} - \frac {8 \, {\left (1853 \, \sqrt {d x} b^{3} d^{16} x^{6} + 3107 \, \sqrt {d x} a b^{2} d^{16} x^{4} + 2223 \, \sqrt {d x} a^{2} b d^{16} x^{2} + 585 \, \sqrt {d x} a^{3} d^{16}\right )}}{{\left (b d^{2} x^{2} + a d^{2}\right )}^{4} b^{4} \mathrm {sgn}\left (b x^{2} + a\right )}}{24576 \, d} \] Input:

integrate((d*x)^(15/2)/(b^2*x^4+2*a*b*x^2+a^2)^(5/2),x, algorithm="giac")
 

Output:

1/24576*(1170*sqrt(2)*(a*b^3*d^2)^(1/4)*d^8*arctan(1/2*sqrt(2)*(sqrt(2)*(a 
*d^2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a*b^5*sgn(b*x^2 + a)) + 117 
0*sqrt(2)*(a*b^3*d^2)^(1/4)*d^8*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/ 
4) - 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a*b^5*sgn(b*x^2 + a)) + 585*sqrt(2)*(a 
*b^3*d^2)^(1/4)*d^8*log(d*x + sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d 
^2/b))/(a*b^5*sgn(b*x^2 + a)) - 585*sqrt(2)*(a*b^3*d^2)^(1/4)*d^8*log(d*x 
- sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a*b^5*sgn(b*x^2 + a) 
) - 8*(1853*sqrt(d*x)*b^3*d^16*x^6 + 3107*sqrt(d*x)*a*b^2*d^16*x^4 + 2223* 
sqrt(d*x)*a^2*b*d^16*x^2 + 585*sqrt(d*x)*a^3*d^16)/((b*d^2*x^2 + a*d^2)^4* 
b^4*sgn(b*x^2 + a)))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(d x)^{15/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{5/2}} \, dx=\int \frac {{\left (d\,x\right )}^{15/2}}{{\left (a^2+2\,a\,b\,x^2+b^2\,x^4\right )}^{5/2}} \,d x \] Input:

int((d*x)^(15/2)/(a^2 + b^2*x^4 + 2*a*b*x^2)^(5/2),x)
 

Output:

int((d*x)^(15/2)/(a^2 + b^2*x^4 + 2*a*b*x^2)^(5/2), x)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 824, normalized size of antiderivative = 1.84 \[ \int \frac {(d x)^{15/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{5/2}} \, dx =\text {Too large to display} \] Input:

int((d*x)^(15/2)/(b^2*x^4+2*a*b*x^2+a^2)^(5/2),x)
 

Output:

(sqrt(d)*d**7*( - 1170*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*s 
qrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a**4 - 4680*b**(3 
/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/ 
(b**(1/4)*a**(1/4)*sqrt(2)))*a**3*b*x**2 - 7020*b**(3/4)*a**(1/4)*sqrt(2)* 
atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sq 
rt(2)))*a**2*b**2*x**4 - 4680*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a** 
(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a*b**3*x** 
6 - 1170*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqr 
t(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*b**4*x**8 + 1170*b**(3/4)*a**(1 
/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4) 
*a**(1/4)*sqrt(2)))*a**4 + 4680*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a 
**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a**3*b*x 
**2 + 7020*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*s 
qrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a**2*b**2*x**4 + 4680*b**(3/4 
)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b 
**(1/4)*a**(1/4)*sqrt(2)))*a*b**3*x**6 + 1170*b**(3/4)*a**(1/4)*sqrt(2)*at 
an((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt 
(2)))*b**4*x**8 - 585*b**(3/4)*a**(1/4)*sqrt(2)*log( - sqrt(x)*b**(1/4)*a* 
*(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*a**4 - 2340*b**(3/4)*a**(1/4)*sqrt(2 
)*log( - sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*a**3*...