\(\int \frac {x^4}{(a+b x^2+c x^4)^2} \, dx\) [798]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 18, antiderivative size = 237 \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {x \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\left (b-\frac {b^2+4 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (b^2+4 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}} \] Output:

1/2*x*(b*x^2+2*a)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/4*(b-(4*a*c+b^2)/(-4*a*c+ 
b^2)^(1/2))*arctan(2^(1/2)*c^(1/2)*x/(b-(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2) 
/c^(1/2)/(-4*a*c+b^2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+1/4*(b^2+4*a*c+b*(-4*a* 
c+b^2)^(1/2))*arctan(2^(1/2)*c^(1/2)*x/(b+(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/ 
2)/c^(1/2)/(-4*a*c+b^2)^(3/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)
 

Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 235, normalized size of antiderivative = 0.99 \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {1}{4} \left (\frac {2 \left (2 a x+b x^3\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {2} \left (-b^2-4 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \left (b^2+4 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}\right ) \] Input:

Integrate[x^4/(a + b*x^2 + c*x^4)^2,x]
 

Output:

((2*(2*a*x + b*x^3))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (Sqrt[2]*(-b^2 
- 4*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^ 
2 - 4*a*c]]])/(Sqrt[c]*(b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + 
(Sqrt[2]*(b^2 + 4*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sq 
rt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[c]*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 
 - 4*a*c]]))/4
 

Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 227, normalized size of antiderivative = 0.96, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {1440, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4}{\left (a+b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 1440

\(\displaystyle \frac {x \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int \frac {2 a-b x^2}{c x^4+b x^2+a}dx}{2 \left (b^2-4 a c\right )}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {x \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {-\frac {1}{2} \left (b-\frac {4 a c+b^2}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx-\frac {1}{2} \left (\frac {4 a c+b^2}{\sqrt {b^2-4 a c}}+b\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{2 \left (b^2-4 a c\right )}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {x \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {-\frac {\left (b-\frac {4 a c+b^2}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\left (\frac {4 a c+b^2}{\sqrt {b^2-4 a c}}+b\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}}{2 \left (b^2-4 a c\right )}\)

Input:

Int[x^4/(a + b*x^2 + c*x^4)^2,x]
 

Output:

(x*(2*a + b*x^2))/(2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) - (-(((b - (b^2 + 
4*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4 
*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b - Sqrt[b^2 - 4*a*c]])) - ((b + (b^2 + 4*a 
*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a* 
c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(2*(b^2 - 4*a*c))
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1440
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[(-d^3)*(d*x)^(m - 3)*(2*a + b*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2* 
(p + 1)*(b^2 - 4*a*c))), x] + Simp[d^4/(2*(p + 1)*(b^2 - 4*a*c))   Int[(d*x 
)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), 
x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && Gt 
Q[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.13 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.52

method result size
risch \(\frac {-\frac {b \,x^{3}}{2 \left (4 a c -b^{2}\right )}-\frac {a x}{4 a c -b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4} c +\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (-\frac {b \,\textit {\_R}^{2}}{4 a c -b^{2}}+\frac {2 a}{4 a c -b^{2}}\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} c +\textit {\_R} b}\right )}{4}\) \(123\)
default \(\frac {-\frac {b \,x^{3}}{2 \left (4 a c -b^{2}\right )}-\frac {a x}{4 a c -b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {2 c \left (\frac {\left (-b \sqrt {-4 a c +b^{2}}-4 a c -b^{2}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}-\frac {\left (-b \sqrt {-4 a c +b^{2}}+4 a c +b^{2}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 a c -b^{2}}\) \(230\)

Input:

int(x^4/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)
 

Output:

(-1/2*b/(4*a*c-b^2)*x^3-a/(4*a*c-b^2)*x)/(c*x^4+b*x^2+a)+1/4*sum((-b/(4*a* 
c-b^2)*_R^2+2*a/(4*a*c-b^2))/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^ 
2*b+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1668 vs. \(2 (193) = 386\).

Time = 0.11 (sec) , antiderivative size = 1668, normalized size of antiderivative = 7.04 \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(x^4/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")
 

Output:

1/4*(2*b*x^3 + sqrt(1/2)*((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 
 4*a*b*c)*x^2)*sqrt(-(b^3 + 12*a*b*c + (b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2* 
c^3 - 64*a^3*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^ 
5))/(b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4))*log((3*b^2 + 4*a 
*c)*x + sqrt(1/2)*(b^4 - 8*a*b^2*c + 16*a^2*c^2 + 2*(b^7*c - 12*a*b^5*c^2 
+ 48*a^2*b^3*c^3 - 64*a^3*b*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2* 
c^4 - 64*a^3*c^5))*sqrt(-(b^3 + 12*a*b*c + (b^6*c - 12*a*b^4*c^2 + 48*a^2* 
b^2*c^3 - 64*a^3*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^ 
3*c^5))/(b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4))) - sqrt(1/2) 
*((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(-(b^ 
3 + 12*a*b*c + (b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)/sqrt(b 
^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^6*c - 12*a*b^4*c^ 
2 + 48*a^2*b^2*c^3 - 64*a^3*c^4))*log((3*b^2 + 4*a*c)*x - sqrt(1/2)*(b^4 - 
 8*a*b^2*c + 16*a^2*c^2 + 2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^ 
3*b*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))*sqrt( 
-(b^3 + 12*a*b*c + (b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)/sq 
rt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^6*c - 12*a*b^ 
4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4))) + sqrt(1/2)*((b^2*c - 4*a*c^2)*x^4 
+ a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(-(b^3 + 12*a*b*c - (b^6*c - 
12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3...
 

Sympy [A] (verification not implemented)

Time = 2.23 (sec) , antiderivative size = 296, normalized size of antiderivative = 1.25 \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {- 2 a x - b x^{3}}{8 a^{2} c - 2 a b^{2} + x^{4} \cdot \left (8 a c^{2} - 2 b^{2} c\right ) + x^{2} \cdot \left (8 a b c - 2 b^{3}\right )} + \operatorname {RootSum} {\left (t^{4} \cdot \left (1048576 a^{6} c^{7} - 1572864 a^{5} b^{2} c^{6} + 983040 a^{4} b^{4} c^{5} - 327680 a^{3} b^{6} c^{4} + 61440 a^{2} b^{8} c^{3} - 6144 a b^{10} c^{2} + 256 b^{12} c\right ) + t^{2} \left (- 12288 a^{4} b c^{4} + 8192 a^{3} b^{3} c^{3} - 1536 a^{2} b^{5} c^{2} + 16 b^{9}\right ) + 16 a^{3} c^{2} + 24 a^{2} b^{2} c + 9 a b^{4}, \left ( t \mapsto t \log {\left (x + \frac {16384 t^{3} a^{3} b c^{4} - 12288 t^{3} a^{2} b^{3} c^{3} + 3072 t^{3} a b^{5} c^{2} - 256 t^{3} b^{7} c + 64 t a^{2} c^{2} - 128 t a b^{2} c - 4 t b^{4}}{4 a c + 3 b^{2}} \right )} \right )\right )} \] Input:

integrate(x**4/(c*x**4+b*x**2+a)**2,x)
 

Output:

(-2*a*x - b*x**3)/(8*a**2*c - 2*a*b**2 + x**4*(8*a*c**2 - 2*b**2*c) + x**2 
*(8*a*b*c - 2*b**3)) + RootSum(_t**4*(1048576*a**6*c**7 - 1572864*a**5*b** 
2*c**6 + 983040*a**4*b**4*c**5 - 327680*a**3*b**6*c**4 + 61440*a**2*b**8*c 
**3 - 6144*a*b**10*c**2 + 256*b**12*c) + _t**2*(-12288*a**4*b*c**4 + 8192* 
a**3*b**3*c**3 - 1536*a**2*b**5*c**2 + 16*b**9) + 16*a**3*c**2 + 24*a**2*b 
**2*c + 9*a*b**4, Lambda(_t, _t*log(x + (16384*_t**3*a**3*b*c**4 - 12288*_ 
t**3*a**2*b**3*c**3 + 3072*_t**3*a*b**5*c**2 - 256*_t**3*b**7*c + 64*_t*a* 
*2*c**2 - 128*_t*a*b**2*c - 4*_t*b**4)/(4*a*c + 3*b**2))))
 

Maxima [F]

\[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {x^{4}}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \] Input:

integrate(x^4/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")
 

Output:

1/2*(b*x^3 + 2*a*x)/((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a* 
b*c)*x^2) + 1/2*integrate((b*x^2 - 2*a)/(c*x^4 + b*x^2 + a), x)/(b^2 - 4*a 
*c)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2132 vs. \(2 (193) = 386\).

Time = 0.53 (sec) , antiderivative size = 2132, normalized size of antiderivative = 9.00 \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(x^4/(c*x^4+b*x^2+a)^2,x, algorithm="giac")
 

Output:

1/2*(b*x^3 + 2*a*x)/((c*x^4 + b*x^2 + a)*(b^2 - 4*a*c)) - 1/16*(2*b^7*c^2 
- 8*a*b^5*c^3 - 32*a^2*b^3*c^4 + 128*a^3*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c) 
*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^7 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b* 
c + sqrt(b^2 - 4*a*c)*c)*a*b^5*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
sqrt(b^2 - 4*a*c)*c)*b^6*c + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt( 
b^2 - 4*a*c)*c)*a^2*b^3*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^ 
2 - 4*a*c)*c)*b^5*c^2 - 64*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 
 4*a*c)*c)*a^3*b*c^3 - 32*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 
4*a*c)*c)*a^2*b^2*c^3 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 
 4*a*c)*c)*a^2*b*c^4 - 2*(b^2 - 4*a*c)*b^5*c^2 + 32*(b^2 - 4*a*c)*a^2*b*c^ 
4 - (2*b^3*c^2 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 
 - 4*a*c)*c)*b^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c 
)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b 
^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2 
*(b^2 - 4*a*c)*b*c^2)*(b^2 - 4*a*c)^2 + 4*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4 
*a*c)*c)*a*b^4*c - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^2 - 
 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c^2 - 2*a*b^4*c^2 + 16*sq 
rt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^3 + 8*sqrt(2)*sqrt(b*c + sqrt( 
b^2 - 4*a*c)*c)*a^2*b*c^3 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2* 
c^3 + 16*a^2*b^2*c^3 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^...
 

Mupad [B] (verification not implemented)

Time = 19.66 (sec) , antiderivative size = 4973, normalized size of antiderivative = 20.98 \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \] Input:

int(x^4/(a + b*x^2 + c*x^4)^2,x)
 

Output:

- atan(((((2048*a^4*c^5 - 32*a*b^6*c^2 + 384*a^2*b^4*c^3 - 1536*a^3*b^2*c^ 
4)/(8*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)) - (x*(((-(4*a*c - 
b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/(3 
2*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6* 
c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2)*(16*b^7*c^2 - 192*a*b^5 
*c^3 - 1024*a^3*b*c^5 + 768*a^2*b^3*c^4))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c 
)))*(((-(4*a*c - b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 51 
2*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^ 
3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2) - (x*( 
b^4*c + 8*a^2*c^3 + 2*a*b^2*c^2))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))*(((- 
(4*a*c - b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^ 
3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280 
*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2)*1i - (((2048*a 
^4*c^5 - 32*a*b^6*c^2 + 384*a^2*b^4*c^3 - 1536*a^3*b^2*c^4)/(8*(b^6 - 64*a 
^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)) + (x*(((-(4*a*c - b^2)^9)^(1/2) - b 
^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/(32*(b^12*c + 4096* 
a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^ 
4*c^5 - 6144*a^5*b^2*c^6)))^(1/2)*(16*b^7*c^2 - 192*a*b^5*c^3 - 1024*a^3*b 
*c^5 + 768*a^2*b^3*c^4))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))*(((-(4*a*c - 
b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)...
 

Reduce [B] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 1795, normalized size of antiderivative = 7.57 \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^2} \, dx =\text {Too large to display} \] Input:

int(x^4/(c*x^4+b*x^2+a)^2,x)
 

Output:

(8*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 
 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b*c + 8*sqrt(a)*sqrt(2*sqrt(c 
)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqr 
t(c)*sqrt(a) + b))*b**2*c*x**2 + 8*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*ata 
n((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b)) 
*b*c**2*x**4 - 8*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)* 
sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**2*c - 2*sqrt(c 
)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c 
)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b**2 - 8*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a 
) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqr 
t(a) + b))*a*b*c*x**2 - 8*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2 
*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*c**2*x 
**4 - 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - 
 b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b**3*x**2 - 2*sqrt(c)*sqrt 
(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/s 
qrt(2*sqrt(c)*sqrt(a) + b))*b**2*c*x**4 - 8*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) 
 + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt 
(a) + b))*a*b*c - 8*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt( 
c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b**2*c*x**2 - 
8*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b)...