\(\int \frac {x^5}{(a+b x^2+c x^4)^3} \, dx\) [805]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 18, antiderivative size = 130 \[ \int \frac {x^5}{\left (a+b x^2+c x^4\right )^3} \, dx=\frac {x^2 \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {3 a b+\left (b^2+2 a c\right ) x^2}{2 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}-\frac {\left (b^2+2 a c\right ) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{5/2}} \] Output:

1/4*x^2*(b*x^2+2*a)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^2+1/2*(3*a*b+(2*a*c+b^2)* 
x^2)/(-4*a*c+b^2)^2/(c*x^4+b*x^2+a)-(2*a*c+b^2)*arctanh((2*c*x^2+b)/(-4*a* 
c+b^2)^(1/2))/(-4*a*c+b^2)^(5/2)
 

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.12 \[ \int \frac {x^5}{\left (a+b x^2+c x^4\right )^3} \, dx=\frac {1}{4} \left (\frac {\left (b^2+2 a c\right ) \left (b+2 c x^2\right )}{c \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac {b^2 x^2+a \left (b-2 c x^2\right )}{c \left (-b^2+4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {4 \left (b^2+2 a c\right ) \arctan \left (\frac {b+2 c x^2}{\sqrt {-b^2+4 a c}}\right )}{\left (-b^2+4 a c\right )^{5/2}}\right ) \] Input:

Integrate[x^5/(a + b*x^2 + c*x^4)^3,x]
 

Output:

(((b^2 + 2*a*c)*(b + 2*c*x^2))/(c*(b^2 - 4*a*c)^2*(a + b*x^2 + c*x^4)) + ( 
b^2*x^2 + a*(b - 2*c*x^2))/(c*(-b^2 + 4*a*c)*(a + b*x^2 + c*x^4)^2) + (4*( 
b^2 + 2*a*c)*ArcTan[(b + 2*c*x^2)/Sqrt[-b^2 + 4*a*c]])/(-b^2 + 4*a*c)^(5/2 
))/4
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.12, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {1434, 1164, 27, 1159, 1083, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5}{\left (a+b x^2+c x^4\right )^3} \, dx\)

\(\Big \downarrow \) 1434

\(\displaystyle \frac {1}{2} \int \frac {x^4}{\left (c x^4+b x^2+a\right )^3}dx^2\)

\(\Big \downarrow \) 1164

\(\displaystyle \frac {1}{2} \left (\frac {x^2 \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\int \frac {2 \left (a-b x^2\right )}{\left (c x^4+b x^2+a\right )^2}dx^2}{2 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {x^2 \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\int \frac {a-b x^2}{\left (c x^4+b x^2+a\right )^2}dx^2}{b^2-4 a c}\right )\)

\(\Big \downarrow \) 1159

\(\displaystyle \frac {1}{2} \left (\frac {x^2 \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {-\frac {\left (2 a c+b^2\right ) \int \frac {1}{c x^4+b x^2+a}dx^2}{b^2-4 a c}-\frac {x^2 \left (2 a c+b^2\right )+3 a b}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}}{b^2-4 a c}\right )\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {1}{2} \left (\frac {x^2 \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\frac {2 \left (2 a c+b^2\right ) \int \frac {1}{-x^4+b^2-4 a c}d\left (2 c x^2+b\right )}{b^2-4 a c}-\frac {x^2 \left (2 a c+b^2\right )+3 a b}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}}{b^2-4 a c}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (\frac {x^2 \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\frac {2 \left (2 a c+b^2\right ) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}-\frac {x^2 \left (2 a c+b^2\right )+3 a b}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}}{b^2-4 a c}\right )\)

Input:

Int[x^5/(a + b*x^2 + c*x^4)^3,x]
 

Output:

((x^2*(2*a + b*x^2))/(2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2) - (-((3*a*b + 
 (b^2 + 2*a*c)*x^2)/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4))) + (2*(b^2 + 2*a*c 
)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(3/2))/(b^2 - 4* 
a*c))/2
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1159
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol 
] :> Simp[((b*d - 2*a*e + (2*c*d - b*e)*x)/((p + 1)*(b^2 - 4*a*c)))*(a + b* 
x + c*x^2)^(p + 1), x] - Simp[(2*p + 3)*((2*c*d - b*e)/((p + 1)*(b^2 - 4*a* 
c)))   Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] & 
& LtQ[p, -1] && NeQ[p, -3/2]
 

rule 1164
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(d + e*x)^(m - 1)*(d*b - 2*a*e + (2*c*d - b*e)*x)*((a + b*x 
+ c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c))), x] + Simp[1/((p + 1)*(b^2 - 4*a* 
c))   Int[(d + e*x)^(m - 2)*Simp[e*(2*a*e*(m - 1) + b*d*(2*p - m + 4)) - 2* 
c*d^2*(2*p + 3) + e*(b*e - 2*d*c)*(m + 2*p + 2)*x, x]*(a + b*x + c*x^2)^(p 
+ 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[p, -1] && GtQ[m, 1] && Int 
QuadraticQ[a, b, c, d, e, m, p, x]
 

rule 1434
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp 
[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x + c*x^2)^p, x], x, x^2], x] /; Free 
Q[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]
 
Maple [A] (verified)

Time = 0.18 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.66

method result size
default \(\frac {\frac {c \left (2 a c +b^{2}\right ) x^{6}}{16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}}+\frac {3 b \left (2 a c +b^{2}\right ) x^{4}}{2 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {a \left (2 a c -5 b^{2}\right ) x^{2}}{16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}}+\frac {3 a^{2} b}{16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}}}{2 \left (c \,x^{4}+b \,x^{2}+a \right )^{2}}+\frac {\left (2 a c +b^{2}\right ) \arctan \left (\frac {2 c \,x^{2}+b}{\sqrt {4 a c -b^{2}}}\right )}{\left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) \sqrt {4 a c -b^{2}}}\) \(216\)
risch \(\frac {\frac {c \left (2 a c +b^{2}\right ) x^{6}}{32 a^{2} c^{2}-16 a \,b^{2} c +2 b^{4}}+\frac {3 b \left (2 a c +b^{2}\right ) x^{4}}{4 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {a \left (2 a c -5 b^{2}\right ) x^{2}}{2 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}+\frac {3 a^{2} b}{2 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}}{\left (c \,x^{4}+b \,x^{2}+a \right )^{2}}-\frac {\ln \left (\left (\left (-4 a c +b^{2}\right )^{\frac {5}{2}}-16 a^{2} b \,c^{2}+8 a \,b^{3} c -b^{5}\right ) x^{2}-32 a^{3} c^{2}+16 a^{2} b^{2} c -2 b^{4} a \right ) a c}{\left (-4 a c +b^{2}\right )^{\frac {5}{2}}}-\frac {\ln \left (\left (\left (-4 a c +b^{2}\right )^{\frac {5}{2}}-16 a^{2} b \,c^{2}+8 a \,b^{3} c -b^{5}\right ) x^{2}-32 a^{3} c^{2}+16 a^{2} b^{2} c -2 b^{4} a \right ) b^{2}}{2 \left (-4 a c +b^{2}\right )^{\frac {5}{2}}}+\frac {\ln \left (\left (\left (-4 a c +b^{2}\right )^{\frac {5}{2}}+16 a^{2} b \,c^{2}-8 a \,b^{3} c +b^{5}\right ) x^{2}+32 a^{3} c^{2}-16 a^{2} b^{2} c +2 b^{4} a \right ) a c}{\left (-4 a c +b^{2}\right )^{\frac {5}{2}}}+\frac {\ln \left (\left (\left (-4 a c +b^{2}\right )^{\frac {5}{2}}+16 a^{2} b \,c^{2}-8 a \,b^{3} c +b^{5}\right ) x^{2}+32 a^{3} c^{2}-16 a^{2} b^{2} c +2 b^{4} a \right ) b^{2}}{2 \left (-4 a c +b^{2}\right )^{\frac {5}{2}}}\) \(449\)

Input:

int(x^5/(c*x^4+b*x^2+a)^3,x,method=_RETURNVERBOSE)
 

Output:

1/2*(c*(2*a*c+b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^6+3/2*b*(2*a*c+b^2)/(16*a^ 
2*c^2-8*a*b^2*c+b^4)*x^4-a*(2*a*c-5*b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2+3* 
a^2*b/(16*a^2*c^2-8*a*b^2*c+b^4))/(c*x^4+b*x^2+a)^2+(2*a*c+b^2)/(16*a^2*c^ 
2-8*a*b^2*c+b^4)/(4*a*c-b^2)^(1/2)*arctan((2*c*x^2+b)/(4*a*c-b^2)^(1/2))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 441 vs. \(2 (122) = 244\).

Time = 0.09 (sec) , antiderivative size = 907, normalized size of antiderivative = 6.98 \[ \int \frac {x^5}{\left (a+b x^2+c x^4\right )^3} \, dx =\text {Too large to display} \] Input:

integrate(x^5/(c*x^4+b*x^2+a)^3,x, algorithm="fricas")
 

Output:

[1/4*(2*(b^4*c - 2*a*b^2*c^2 - 8*a^2*c^3)*x^6 + 6*a^2*b^3 - 24*a^3*b*c + 3 
*(b^5 - 2*a*b^3*c - 8*a^2*b*c^2)*x^4 + 2*(5*a*b^4 - 22*a^2*b^2*c + 8*a^3*c 
^2)*x^2 + 2*((b^2*c^2 + 2*a*c^3)*x^8 + 2*(b^3*c + 2*a*b*c^2)*x^6 + (b^4 + 
4*a*b^2*c + 4*a^2*c^2)*x^4 + a^2*b^2 + 2*a^3*c + 2*(a*b^3 + 2*a^2*b*c)*x^2 
)*sqrt(b^2 - 4*a*c)*log((2*c^2*x^4 + 2*b*c*x^2 + b^2 - 2*a*c - (2*c*x^2 + 
b)*sqrt(b^2 - 4*a*c))/(c*x^4 + b*x^2 + a)))/((b^6*c^2 - 12*a*b^4*c^3 + 48* 
a^2*b^2*c^4 - 64*a^3*c^5)*x^8 + a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 
64*a^5*c^3 + 2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*x^6 
+ (b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*x^4 + 
 2*(a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3)*x^2), 1/4*(2*(b^ 
4*c - 2*a*b^2*c^2 - 8*a^2*c^3)*x^6 + 6*a^2*b^3 - 24*a^3*b*c + 3*(b^5 - 2*a 
*b^3*c - 8*a^2*b*c^2)*x^4 + 2*(5*a*b^4 - 22*a^2*b^2*c + 8*a^3*c^2)*x^2 - 4 
*((b^2*c^2 + 2*a*c^3)*x^8 + 2*(b^3*c + 2*a*b*c^2)*x^6 + (b^4 + 4*a*b^2*c + 
 4*a^2*c^2)*x^4 + a^2*b^2 + 2*a^3*c + 2*(a*b^3 + 2*a^2*b*c)*x^2)*sqrt(-b^2 
 + 4*a*c)*arctan(-(2*c*x^2 + b)*sqrt(-b^2 + 4*a*c)/(b^2 - 4*a*c)))/((b^6*c 
^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*x^8 + a^2*b^6 - 12*a^3*b^ 
4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3 + 2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c 
^3 - 64*a^3*b*c^4)*x^6 + (b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c 
^3 - 128*a^4*c^4)*x^4 + 2*(a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4* 
b*c^3)*x^2)]
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 580 vs. \(2 (119) = 238\).

Time = 2.02 (sec) , antiderivative size = 580, normalized size of antiderivative = 4.46 \[ \int \frac {x^5}{\left (a+b x^2+c x^4\right )^3} \, dx=- \frac {\sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{5}}} \cdot \left (2 a c + b^{2}\right ) \log {\left (x^{2} + \frac {- 64 a^{3} c^{3} \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{5}}} \cdot \left (2 a c + b^{2}\right ) + 48 a^{2} b^{2} c^{2} \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{5}}} \cdot \left (2 a c + b^{2}\right ) - 12 a b^{4} c \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{5}}} \cdot \left (2 a c + b^{2}\right ) + 2 a b c + b^{6} \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{5}}} \cdot \left (2 a c + b^{2}\right ) + b^{3}}{4 a c^{2} + 2 b^{2} c} \right )}}{2} + \frac {\sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{5}}} \cdot \left (2 a c + b^{2}\right ) \log {\left (x^{2} + \frac {64 a^{3} c^{3} \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{5}}} \cdot \left (2 a c + b^{2}\right ) - 48 a^{2} b^{2} c^{2} \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{5}}} \cdot \left (2 a c + b^{2}\right ) + 12 a b^{4} c \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{5}}} \cdot \left (2 a c + b^{2}\right ) + 2 a b c - b^{6} \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{5}}} \cdot \left (2 a c + b^{2}\right ) + b^{3}}{4 a c^{2} + 2 b^{2} c} \right )}}{2} + \frac {6 a^{2} b + x^{6} \cdot \left (4 a c^{2} + 2 b^{2} c\right ) + x^{4} \cdot \left (6 a b c + 3 b^{3}\right ) + x^{2} \left (- 4 a^{2} c + 10 a b^{2}\right )}{64 a^{4} c^{2} - 32 a^{3} b^{2} c + 4 a^{2} b^{4} + x^{8} \cdot \left (64 a^{2} c^{4} - 32 a b^{2} c^{3} + 4 b^{4} c^{2}\right ) + x^{6} \cdot \left (128 a^{2} b c^{3} - 64 a b^{3} c^{2} + 8 b^{5} c\right ) + x^{4} \cdot \left (128 a^{3} c^{3} - 24 a b^{4} c + 4 b^{6}\right ) + x^{2} \cdot \left (128 a^{3} b c^{2} - 64 a^{2} b^{3} c + 8 a b^{5}\right )} \] Input:

integrate(x**5/(c*x**4+b*x**2+a)**3,x)
 

Output:

-sqrt(-1/(4*a*c - b**2)**5)*(2*a*c + b**2)*log(x**2 + (-64*a**3*c**3*sqrt( 
-1/(4*a*c - b**2)**5)*(2*a*c + b**2) + 48*a**2*b**2*c**2*sqrt(-1/(4*a*c - 
b**2)**5)*(2*a*c + b**2) - 12*a*b**4*c*sqrt(-1/(4*a*c - b**2)**5)*(2*a*c + 
 b**2) + 2*a*b*c + b**6*sqrt(-1/(4*a*c - b**2)**5)*(2*a*c + b**2) + b**3)/ 
(4*a*c**2 + 2*b**2*c))/2 + sqrt(-1/(4*a*c - b**2)**5)*(2*a*c + b**2)*log(x 
**2 + (64*a**3*c**3*sqrt(-1/(4*a*c - b**2)**5)*(2*a*c + b**2) - 48*a**2*b* 
*2*c**2*sqrt(-1/(4*a*c - b**2)**5)*(2*a*c + b**2) + 12*a*b**4*c*sqrt(-1/(4 
*a*c - b**2)**5)*(2*a*c + b**2) + 2*a*b*c - b**6*sqrt(-1/(4*a*c - b**2)**5 
)*(2*a*c + b**2) + b**3)/(4*a*c**2 + 2*b**2*c))/2 + (6*a**2*b + x**6*(4*a* 
c**2 + 2*b**2*c) + x**4*(6*a*b*c + 3*b**3) + x**2*(-4*a**2*c + 10*a*b**2)) 
/(64*a**4*c**2 - 32*a**3*b**2*c + 4*a**2*b**4 + x**8*(64*a**2*c**4 - 32*a* 
b**2*c**3 + 4*b**4*c**2) + x**6*(128*a**2*b*c**3 - 64*a*b**3*c**2 + 8*b**5 
*c) + x**4*(128*a**3*c**3 - 24*a*b**4*c + 4*b**6) + x**2*(128*a**3*b*c**2 
- 64*a**2*b**3*c + 8*a*b**5))
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^5}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(x^5/(c*x^4+b*x^2+a)^3,x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` for 
 more deta
 

Giac [A] (verification not implemented)

Time = 1.15 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.24 \[ \int \frac {x^5}{\left (a+b x^2+c x^4\right )^3} \, dx=\frac {{\left (b^{2} + 2 \, a c\right )} \arctan \left (\frac {2 \, c x^{2} + b}{\sqrt {-b^{2} + 4 \, a c}}\right )}{{\left (b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}\right )} \sqrt {-b^{2} + 4 \, a c}} + \frac {2 \, b^{2} c x^{6} + 4 \, a c^{2} x^{6} + 3 \, b^{3} x^{4} + 6 \, a b c x^{4} + 10 \, a b^{2} x^{2} - 4 \, a^{2} c x^{2} + 6 \, a^{2} b}{4 \, {\left (c x^{4} + b x^{2} + a\right )}^{2} {\left (b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}\right )}} \] Input:

integrate(x^5/(c*x^4+b*x^2+a)^3,x, algorithm="giac")
 

Output:

(b^2 + 2*a*c)*arctan((2*c*x^2 + b)/sqrt(-b^2 + 4*a*c))/((b^4 - 8*a*b^2*c + 
 16*a^2*c^2)*sqrt(-b^2 + 4*a*c)) + 1/4*(2*b^2*c*x^6 + 4*a*c^2*x^6 + 3*b^3* 
x^4 + 6*a*b*c*x^4 + 10*a*b^2*x^2 - 4*a^2*c*x^2 + 6*a^2*b)/((c*x^4 + b*x^2 
+ a)^2*(b^4 - 8*a*b^2*c + 16*a^2*c^2))
 

Mupad [B] (verification not implemented)

Time = 18.07 (sec) , antiderivative size = 460, normalized size of antiderivative = 3.54 \[ \int \frac {x^5}{\left (a+b x^2+c x^4\right )^3} \, dx=\frac {\frac {3\,a^2\,b}{2\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}+\frac {x^2\,\left (5\,a\,b^2-2\,a^2\,c\right )}{2\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}+\frac {3\,b\,x^4\,\left (b^2+2\,a\,c\right )}{4\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}+\frac {c\,x^6\,\left (b^2+2\,a\,c\right )}{2\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}}{x^4\,\left (b^2+2\,a\,c\right )+a^2+c^2\,x^8+2\,a\,b\,x^2+2\,b\,c\,x^6}+\frac {\mathrm {atan}\left (\frac {\left (x^2\,\left (\frac {\left (b^2+2\,a\,c\right )\,\left (b^2\,c^2+2\,a\,c^3\right )}{a\,{\left (4\,a\,c-b^2\right )}^{9/2}\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}+\frac {b\,{\left (b^2+2\,a\,c\right )}^2\,\left (32\,a^2\,b\,c^4-16\,a\,b^3\,c^3+2\,b^5\,c^2\right )}{2\,a\,{\left (4\,a\,c-b^2\right )}^{15/2}\,\left (16\,a^2\,c^2-8\,a\,b^2\,c+b^4\right )}\right )+\frac {2\,b\,c^2\,{\left (b^2+2\,a\,c\right )}^2}{{\left (4\,a\,c-b^2\right )}^{15/2}}\right )\,\left (b^4\,{\left (4\,a\,c-b^2\right )}^5+16\,a^2\,c^2\,{\left (4\,a\,c-b^2\right )}^5-8\,a\,b^2\,c\,{\left (4\,a\,c-b^2\right )}^5\right )}{8\,a^2\,c^4+8\,a\,b^2\,c^3+2\,b^4\,c^2}\right )\,\left (b^2+2\,a\,c\right )}{{\left (4\,a\,c-b^2\right )}^{5/2}} \] Input:

int(x^5/(a + b*x^2 + c*x^4)^3,x)
 

Output:

((3*a^2*b)/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (x^2*(5*a*b^2 - 2*a^2*c))/ 
(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (3*b*x^4*(2*a*c + b^2))/(4*(b^4 + 16* 
a^2*c^2 - 8*a*b^2*c)) + (c*x^6*(2*a*c + b^2))/(2*(b^4 + 16*a^2*c^2 - 8*a*b 
^2*c)))/(x^4*(2*a*c + b^2) + a^2 + c^2*x^8 + 2*a*b*x^2 + 2*b*c*x^6) + (ata 
n(((x^2*(((2*a*c + b^2)*(2*a*c^3 + b^2*c^2))/(a*(4*a*c - b^2)^(9/2)*(b^4 + 
 16*a^2*c^2 - 8*a*b^2*c)) + (b*(2*a*c + b^2)^2*(2*b^5*c^2 - 16*a*b^3*c^3 + 
 32*a^2*b*c^4))/(2*a*(4*a*c - b^2)^(15/2)*(b^4 + 16*a^2*c^2 - 8*a*b^2*c))) 
 + (2*b*c^2*(2*a*c + b^2)^2)/(4*a*c - b^2)^(15/2))*(b^4*(4*a*c - b^2)^5 + 
16*a^2*c^2*(4*a*c - b^2)^5 - 8*a*b^2*c*(4*a*c - b^2)^5))/(8*a^2*c^4 + 2*b^ 
4*c^2 + 8*a*b^2*c^3))*(2*a*c + b^2))/(4*a*c - b^2)^(5/2)
 

Reduce [B] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 1694, normalized size of antiderivative = 13.03 \[ \int \frac {x^5}{\left (a+b x^2+c x^4\right )^3} \, dx =\text {Too large to display} \] Input:

int(x^5/(c*x^4+b*x^2+a)^3,x)
 

Output:

( - 8*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2 
*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**3*b*c 
 - 4*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2* 
sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**2*b**3 
 - 16*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2 
*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**2*b** 
2*c*x**2 - 16*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan 
((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))* 
a**2*b*c**2*x**4 - 8*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - 
b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) 
 + b))*a*b**4*x**2 - 16*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) 
 - b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt 
(a) + b))*a*b**3*c*x**4 - 16*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sq 
rt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c) 
*sqrt(a) + b))*a*b**2*c**2*x**6 - 8*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqr 
t(c)*sqrt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2* 
sqrt(c)*sqrt(a) + b))*a*b*c**3*x**8 - 4*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2 
*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqr 
t(2*sqrt(c)*sqrt(a) + b))*b**5*x**4 - 8*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2 
*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/...