\(\int \frac {x^2}{a-b x^2+c x^4} \, dx\) [823]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 150 \[ \int \frac {x^2}{a-b x^2+c x^4} \, dx=\frac {\sqrt {b-\sqrt {b^2-4 a c}} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b^2-4 a c}}-\frac {\sqrt {b+\sqrt {b^2-4 a c}} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b^2-4 a c}} \] Output:

1/2*(b-(-4*a*c+b^2)^(1/2))^(1/2)*arctanh(2^(1/2)*c^(1/2)*x/(b-(-4*a*c+b^2) 
^(1/2))^(1/2))*2^(1/2)/c^(1/2)/(-4*a*c+b^2)^(1/2)-1/2*(b+(-4*a*c+b^2)^(1/2 
))^(1/2)*arctanh(2^(1/2)*c^(1/2)*x/(b+(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)/c 
^(1/2)/(-4*a*c+b^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.91 \[ \int \frac {x^2}{a-b x^2+c x^4} \, dx=\frac {-\sqrt {-b-\sqrt {b^2-4 a c}} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {-b-\sqrt {b^2-4 a c}}}\right )+\sqrt {-b+\sqrt {b^2-4 a c}} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {-b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b^2-4 a c}} \] Input:

Integrate[x^2/(a - b*x^2 + c*x^4),x]
 

Output:

(-(Sqrt[-b - Sqrt[b^2 - 4*a*c]]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[-b - Sqrt[ 
b^2 - 4*a*c]]]) + Sqrt[-b + Sqrt[b^2 - 4*a*c]]*ArcTan[(Sqrt[2]*Sqrt[c]*x)/ 
Sqrt[-b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b^2 - 4*a*c])
 

Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.07, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {1450, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{a-b x^2+c x^4} \, dx\)

\(\Big \downarrow \) 1450

\(\displaystyle \frac {1}{2} \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (-b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (\sqrt {b^2-4 a c}-b\right )}dx\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {\left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}\)

Input:

Int[x^2/(a - b*x^2 + c*x^4),x]
 

Output:

-(((1 - b/Sqrt[b^2 - 4*a*c])*ArcTanh[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 
 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b - Sqrt[b^2 - 4*a*c]])) - ((1 + b/Sqrt 
[b^2 - 4*a*c])*ArcTanh[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/( 
Sqrt[2]*Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]])
 

Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1450
Int[((d_.)*(x_))^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Wi 
th[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(d^2/2)*(b/q + 1)   Int[(d*x)^(m - 2)/(b/ 
2 + q/2 + c*x^2), x], x] - Simp[(d^2/2)*(b/q - 1)   Int[(d*x)^(m - 2)/(b/2 
- q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && 
 GeQ[m, 2]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.09 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.29

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}-\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} c -\textit {\_R} b}\right )}{2}\) \(43\)
default \(4 c \left (-\frac {\left (b +\sqrt {-4 a c +b^{2}}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}+\frac {\left (-b +\sqrt {-4 a c +b^{2}}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )\) \(149\)

Input:

int(x^2/(c*x^4-b*x^2+a),x,method=_RETURNVERBOSE)
 

Output:

1/2*sum(_R^2/(2*_R^3*c-_R*b)*ln(x-_R),_R=RootOf(_Z^4*c-_Z^2*b+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 551 vs. \(2 (115) = 230\).

Time = 0.09 (sec) , antiderivative size = 551, normalized size of antiderivative = 3.67 \[ \int \frac {x^2}{a-b x^2+c x^4} \, dx=-\frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {\frac {b + \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}} \log \left (\frac {\sqrt {\frac {1}{2}} {\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt {\frac {b + \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}} + x\right ) + \frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {\frac {b + \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}} \log \left (-\frac {\sqrt {\frac {1}{2}} {\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt {\frac {b + \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}} + x\right ) + \frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {\frac {b - \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}} \log \left (\frac {\sqrt {\frac {1}{2}} {\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt {\frac {b - \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}} + x\right ) - \frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {\frac {b - \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}} \log \left (-\frac {\sqrt {\frac {1}{2}} {\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt {\frac {b - \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}} + x\right ) \] Input:

integrate(x^2/(c*x^4-b*x^2+a),x, algorithm="fricas")
 

Output:

-1/2*sqrt(1/2)*sqrt((b + (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c 
 - 4*a*c^2))*log(sqrt(1/2)*(b^2*c - 4*a*c^2)*sqrt((b + (b^2*c - 4*a*c^2)/s 
qrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))/sqrt(b^2*c^2 - 4*a*c^3) + x) + 
1/2*sqrt(1/2)*sqrt((b + (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c 
- 4*a*c^2))*log(-sqrt(1/2)*(b^2*c - 4*a*c^2)*sqrt((b + (b^2*c - 4*a*c^2)/s 
qrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))/sqrt(b^2*c^2 - 4*a*c^3) + x) + 
1/2*sqrt(1/2)*sqrt((b - (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c 
- 4*a*c^2))*log(sqrt(1/2)*(b^2*c - 4*a*c^2)*sqrt((b - (b^2*c - 4*a*c^2)/sq 
rt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))/sqrt(b^2*c^2 - 4*a*c^3) + x) - 1 
/2*sqrt(1/2)*sqrt((b - (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 
 4*a*c^2))*log(-sqrt(1/2)*(b^2*c - 4*a*c^2)*sqrt((b - (b^2*c - 4*a*c^2)/sq 
rt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))/sqrt(b^2*c^2 - 4*a*c^3) + x)
 

Sympy [A] (verification not implemented)

Time = 0.38 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.50 \[ \int \frac {x^2}{a-b x^2+c x^4} \, dx=\operatorname {RootSum} {\left (t^{4} \cdot \left (256 a^{2} c^{3} - 128 a b^{2} c^{2} + 16 b^{4} c\right ) + t^{2} \cdot \left (16 a b c - 4 b^{3}\right ) + a, \left ( t \mapsto t \log {\left (64 t^{3} a c^{2} - 16 t^{3} b^{2} c + 2 t b + x \right )} \right )\right )} \] Input:

integrate(x**2/(c*x**4-b*x**2+a),x)
 

Output:

RootSum(_t**4*(256*a**2*c**3 - 128*a*b**2*c**2 + 16*b**4*c) + _t**2*(16*a* 
b*c - 4*b**3) + a, Lambda(_t, _t*log(64*_t**3*a*c**2 - 16*_t**3*b**2*c + 2 
*_t*b + x)))
 

Maxima [F]

\[ \int \frac {x^2}{a-b x^2+c x^4} \, dx=\int { \frac {x^{2}}{c x^{4} - b x^{2} + a} \,d x } \] Input:

integrate(x^2/(c*x^4-b*x^2+a),x, algorithm="maxima")
 

Output:

integrate(x^2/(c*x^4 - b*x^2 + a), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 513 vs. \(2 (115) = 230\).

Time = 0.55 (sec) , antiderivative size = 513, normalized size of antiderivative = 3.42 \[ \int \frac {x^2}{a-b x^2+c x^4} \, dx=-\frac {{\left (2 \, b^{2} c^{2} - 8 \, a c^{3} - \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {-b c - \sqrt {b^{2} - 4 \, a c} c} b^{2} + 4 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {-b c - \sqrt {b^{2} - 4 \, a c} c} a c - 2 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {-b c - \sqrt {b^{2} - 4 \, a c} c} b c - \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {-b c - \sqrt {b^{2} - 4 \, a c} c} c^{2} - 2 \, {\left (b^{2} - 4 \, a c\right )} c^{2}\right )} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} x}{\sqrt {-\frac {b + \sqrt {b^{2} - 4 \, a c}}{c}}}\right )}{2 \, {\left (b^{4} - 8 \, a b^{2} c + 2 \, b^{3} c + 16 \, a^{2} c^{2} - 8 \, a b c^{2} + b^{2} c^{2} - 4 \, a c^{3}\right )} {\left | c \right |}} - \frac {{\left (2 \, b^{2} c^{2} - 8 \, a c^{3} - \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {-b c + \sqrt {b^{2} - 4 \, a c} c} b^{2} + 4 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {-b c + \sqrt {b^{2} - 4 \, a c} c} a c - 2 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {-b c + \sqrt {b^{2} - 4 \, a c} c} b c - \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {-b c + \sqrt {b^{2} - 4 \, a c} c} c^{2} - 2 \, {\left (b^{2} - 4 \, a c\right )} c^{2}\right )} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} x}{\sqrt {-\frac {b - \sqrt {b^{2} - 4 \, a c}}{c}}}\right )}{2 \, {\left (b^{4} - 8 \, a b^{2} c + 2 \, b^{3} c + 16 \, a^{2} c^{2} - 8 \, a b c^{2} + b^{2} c^{2} - 4 \, a c^{3}\right )} {\left | c \right |}} \] Input:

integrate(x^2/(c*x^4-b*x^2+a),x, algorithm="giac")
 

Output:

-1/2*(2*b^2*c^2 - 8*a*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(-b*c - sqrt(b^2 
 - 4*a*c)*c)*b^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(-b*c - sqrt(b^2 - 4*a* 
c)*c)*a*c - 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(-b*c - sqrt(b^2 - 4*a*c)*c)*b 
*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(-b*c - sqrt(b^2 - 4*a*c)*c)*c^2 - 2*(b 
^2 - 4*a*c)*c^2)*arctan(2*sqrt(1/2)*x/sqrt(-(b + sqrt(b^2 - 4*a*c))/c))/(( 
b^4 - 8*a*b^2*c + 2*b^3*c + 16*a^2*c^2 - 8*a*b*c^2 + b^2*c^2 - 4*a*c^3)*ab 
s(c)) - 1/2*(2*b^2*c^2 - 8*a*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(-b*c + s 
qrt(b^2 - 4*a*c)*c)*b^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(-b*c + sqrt(b^2 
 - 4*a*c)*c)*a*c - 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(-b*c + sqrt(b^2 - 4*a* 
c)*c)*b*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(-b*c + sqrt(b^2 - 4*a*c)*c)*c^2 
 - 2*(b^2 - 4*a*c)*c^2)*arctan(2*sqrt(1/2)*x/sqrt(-(b - sqrt(b^2 - 4*a*c)) 
/c))/((b^4 - 8*a*b^2*c + 2*b^3*c + 16*a^2*c^2 - 8*a*b*c^2 + b^2*c^2 - 4*a* 
c^3)*abs(c))
 

Mupad [B] (verification not implemented)

Time = 17.88 (sec) , antiderivative size = 416, normalized size of antiderivative = 2.77 \[ \int \frac {x^2}{a-b x^2+c x^4} \, dx=-2\,\mathrm {atanh}\left (\frac {\left (x\,\left (4\,a\,c^2-2\,b^2\,c\right )+\frac {x\,\left (8\,b^3\,c^2-32\,a\,b\,c^3\right )\,\left (b^3+\sqrt {-{\left (4\,a\,c-b^2\right )}^3}-4\,a\,b\,c\right )}{8\,\left (16\,a^2\,c^3-8\,a\,b^2\,c^2+b^4\,c\right )}\right )\,\sqrt {\frac {b^3+\sqrt {-{\left (4\,a\,c-b^2\right )}^3}-4\,a\,b\,c}{8\,\left (16\,a^2\,c^3-8\,a\,b^2\,c^2+b^4\,c\right )}}}{a\,c}\right )\,\sqrt {\frac {b^3+\sqrt {-{\left (4\,a\,c-b^2\right )}^3}-4\,a\,b\,c}{8\,\left (16\,a^2\,c^3-8\,a\,b^2\,c^2+b^4\,c\right )}}-2\,\mathrm {atanh}\left (\frac {\left (x\,\left (4\,a\,c^2-2\,b^2\,c\right )-\frac {x\,\left (8\,b^3\,c^2-32\,a\,b\,c^3\right )\,\left (\sqrt {-{\left (4\,a\,c-b^2\right )}^3}-b^3+4\,a\,b\,c\right )}{8\,\left (16\,a^2\,c^3-8\,a\,b^2\,c^2+b^4\,c\right )}\right )\,\sqrt {-\frac {\sqrt {-{\left (4\,a\,c-b^2\right )}^3}-b^3+4\,a\,b\,c}{8\,\left (16\,a^2\,c^3-8\,a\,b^2\,c^2+b^4\,c\right )}}}{a\,c}\right )\,\sqrt {-\frac {\sqrt {-{\left (4\,a\,c-b^2\right )}^3}-b^3+4\,a\,b\,c}{8\,\left (16\,a^2\,c^3-8\,a\,b^2\,c^2+b^4\,c\right )}} \] Input:

int(x^2/(a - b*x^2 + c*x^4),x)
 

Output:

- 2*atanh(((x*(4*a*c^2 - 2*b^2*c) + (x*(8*b^3*c^2 - 32*a*b*c^3)*(b^3 + (-( 
4*a*c - b^2)^3)^(1/2) - 4*a*b*c))/(8*(b^4*c + 16*a^2*c^3 - 8*a*b^2*c^2)))* 
((b^3 + (-(4*a*c - b^2)^3)^(1/2) - 4*a*b*c)/(8*(b^4*c + 16*a^2*c^3 - 8*a*b 
^2*c^2)))^(1/2))/(a*c))*((b^3 + (-(4*a*c - b^2)^3)^(1/2) - 4*a*b*c)/(8*(b^ 
4*c + 16*a^2*c^3 - 8*a*b^2*c^2)))^(1/2) - 2*atanh(((x*(4*a*c^2 - 2*b^2*c) 
- (x*(8*b^3*c^2 - 32*a*b*c^3)*((-(4*a*c - b^2)^3)^(1/2) - b^3 + 4*a*b*c))/ 
(8*(b^4*c + 16*a^2*c^3 - 8*a*b^2*c^2)))*(-((-(4*a*c - b^2)^3)^(1/2) - b^3 
+ 4*a*b*c)/(8*(b^4*c + 16*a^2*c^3 - 8*a*b^2*c^2)))^(1/2))/(a*c))*(-((-(4*a 
*c - b^2)^3)^(1/2) - b^3 + 4*a*b*c)/(8*(b^4*c + 16*a^2*c^3 - 8*a*b^2*c^2)) 
)^(1/2)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 343, normalized size of antiderivative = 2.29 \[ \int \frac {x^2}{a-b x^2+c x^4} \, dx=\frac {-4 \sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}+b}-2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}-b}}\right ) c -2 \sqrt {c}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}+b}-2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}-b}}\right ) b +4 \sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}+b}+2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}-b}}\right ) c +2 \sqrt {c}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}+b}+2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}-b}}\right ) b +2 \sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \mathrm {log}\left (-\sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) c -2 \sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \mathrm {log}\left (\sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) c -\sqrt {c}\, \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \mathrm {log}\left (-\sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) b +\sqrt {c}\, \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \mathrm {log}\left (\sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) b}{4 c \left (4 a c -b^{2}\right )} \] Input:

int(x^2/(c*x^4-b*x^2+a),x)
 

Output:

( - 4*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) + b 
) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) - b))*c - 2*sqrt(c)*sqrt(2*sqrt(c) 
*sqrt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) + b) - 2*sqrt(c)*x)/sqrt(2*sqrt 
(c)*sqrt(a) - b))*b + 4*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*s 
qrt(c)*sqrt(a) + b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) - b))*c + 2*sqrt 
(c)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) + b) + 2*sqrt 
(c)*x)/sqrt(2*sqrt(c)*sqrt(a) - b))*b + 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + 
 b)*log( - sqrt(2*sqrt(c)*sqrt(a) + b)*x + sqrt(a) + sqrt(c)*x**2)*c - 2*s 
qrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*log(sqrt(2*sqrt(c)*sqrt(a) + b)*x + sqr 
t(a) + sqrt(c)*x**2)*c - sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*log( - sqrt(2 
*sqrt(c)*sqrt(a) + b)*x + sqrt(a) + sqrt(c)*x**2)*b + sqrt(c)*sqrt(2*sqrt( 
c)*sqrt(a) + b)*log(sqrt(2*sqrt(c)*sqrt(a) + b)*x + sqrt(a) + sqrt(c)*x**2 
)*b)/(4*c*(4*a*c - b**2))