\(\int \frac {x^{7/2}}{(a+b x^2+c x^4)^2} \, dx\) [933]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 483 \[ \int \frac {x^{7/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {\sqrt {x} \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\left (3 b^2+4 a c+3 b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4 \sqrt [4]{2} \sqrt [4]{c} \left (b^2-4 a c\right )^{3/2} \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {\left (3 b^2+4 a c-3 b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4 \sqrt [4]{2} \sqrt [4]{c} \left (b^2-4 a c\right )^{3/2} \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}}-\frac {\left (3 b^2+4 a c+3 b \sqrt {b^2-4 a c}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4 \sqrt [4]{2} \sqrt [4]{c} \left (b^2-4 a c\right )^{3/2} \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {\left (3 b^2+4 a c-3 b \sqrt {b^2-4 a c}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4 \sqrt [4]{2} \sqrt [4]{c} \left (b^2-4 a c\right )^{3/2} \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}} \] Output:

1/2*x^(1/2)*(b*x^2+2*a)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)-1/8*(3*b^2+4*a*c+3*b* 
(-4*a*c+b^2)^(1/2))*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2)) 
^(1/4))*2^(3/4)/c^(1/4)/(-4*a*c+b^2)^(3/2)/(-b-(-4*a*c+b^2)^(1/2))^(3/4)+1 
/8*(3*b^2+4*a*c-3*b*(-4*a*c+b^2)^(1/2))*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b 
+(-4*a*c+b^2)^(1/2))^(1/4))*2^(3/4)/c^(1/4)/(-4*a*c+b^2)^(3/2)/(-b+(-4*a*c 
+b^2)^(1/2))^(3/4)-1/8*(3*b^2+4*a*c+3*b*(-4*a*c+b^2)^(1/2))*arctanh(2^(1/4 
)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*2^(3/4)/c^(1/4)/(-4*a*c+b 
^2)^(3/2)/(-b-(-4*a*c+b^2)^(1/2))^(3/4)+1/8*(3*b^2+4*a*c-3*b*(-4*a*c+b^2)^ 
(1/2))*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*2^(3 
/4)/c^(1/4)/(-4*a*c+b^2)^(3/2)/(-b+(-4*a*c+b^2)^(1/2))^(3/4)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.30 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.40 \[ \int \frac {x^{7/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {1}{8} \left (\frac {4 \sqrt {x} \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {4 \text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {\log \left (\sqrt {x}-\text {$\#$1}\right )}{b \text {$\#$1}^3+2 c \text {$\#$1}^7}\&\right ]}{c}+\frac {\text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {-4 b^2 \log \left (\sqrt {x}-\text {$\#$1}\right )+14 a c \log \left (\sqrt {x}-\text {$\#$1}\right )+3 b c \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}^3+2 c \text {$\#$1}^7}\&\right ]}{c \left (b^2-4 a c\right )}\right ) \] Input:

Integrate[x^(7/2)/(a + b*x^2 + c*x^4)^2,x]
 

Output:

((4*Sqrt[x]*(2*a + b*x^2))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (4*RootSu 
m[a + b*#1^4 + c*#1^8 & , Log[Sqrt[x] - #1]/(b*#1^3 + 2*c*#1^7) & ])/c + R 
ootSum[a + b*#1^4 + c*#1^8 & , (-4*b^2*Log[Sqrt[x] - #1] + 14*a*c*Log[Sqrt 
[x] - #1] + 3*b*c*Log[Sqrt[x] - #1]*#1^4)/(b*#1^3 + 2*c*#1^7) & ]/(c*(b^2 
- 4*a*c)))/8
 

Rubi [A] (verified)

Time = 1.04 (sec) , antiderivative size = 409, normalized size of antiderivative = 0.85, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {1435, 1701, 1752, 756, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{7/2}}{\left (a+b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 1435

\(\displaystyle 2 \int \frac {x^4}{\left (c x^4+b x^2+a\right )^2}d\sqrt {x}\)

\(\Big \downarrow \) 1701

\(\displaystyle 2 \left (\frac {\sqrt {x} \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int \frac {2 a-3 b x^2}{c x^4+b x^2+a}d\sqrt {x}}{4 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 1752

\(\displaystyle 2 \left (\frac {\sqrt {x} \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {-\frac {1}{2} \left (3 b-\frac {4 a c+3 b^2}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}d\sqrt {x}-\frac {1}{2} \left (\frac {4 a c+3 b^2}{\sqrt {b^2-4 a c}}+3 b\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}d\sqrt {x}}{4 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 756

\(\displaystyle 2 \left (\frac {\sqrt {x} \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {-\frac {1}{2} \left (\frac {4 a c+3 b^2}{\sqrt {b^2-4 a c}}+3 b\right ) \left (-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {-b-\sqrt {b^2-4 a c}}}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}\right )-\frac {1}{2} \left (3 b-\frac {4 a c+3 b^2}{\sqrt {b^2-4 a c}}\right ) \left (-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {\sqrt {b^2-4 a c}-b}}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}\right )}{4 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle 2 \left (\frac {\sqrt {x} \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {-\frac {1}{2} \left (\frac {4 a c+3 b^2}{\sqrt {b^2-4 a c}}+3 b\right ) \left (-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )-\frac {1}{2} \left (3 b-\frac {4 a c+3 b^2}{\sqrt {b^2-4 a c}}\right ) \left (-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )}{4 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle 2 \left (\frac {\sqrt {x} \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {-\frac {1}{2} \left (\frac {4 a c+3 b^2}{\sqrt {b^2-4 a c}}+3 b\right ) \left (-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )-\frac {1}{2} \left (3 b-\frac {4 a c+3 b^2}{\sqrt {b^2-4 a c}}\right ) \left (-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )}{4 \left (b^2-4 a c\right )}\right )\)

Input:

Int[x^(7/2)/(a + b*x^2 + c*x^4)^2,x]
 

Output:

2*((Sqrt[x]*(2*a + b*x^2))/(4*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) - (-1/2*( 
(3*b + (3*b^2 + 4*a*c)/Sqrt[b^2 - 4*a*c])*(-(ArcTan[(2^(1/4)*c^(1/4)*Sqrt[ 
x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b - Sqrt[b^2 - 4*a* 
c])^(3/4))) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^( 
1/4)]/(2^(1/4)*c^(1/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4)))) - ((3*b - (3*b^2 
+ 4*a*c)/Sqrt[b^2 - 4*a*c])*(-(ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt 
[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))) - 
ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4) 
*c^(1/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))))/2)/(4*(b^2 - 4*a*c)))
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 1435
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> With[{k = Denominator[m]}, Simp[k/d   Subst[Int[x^(k*(m + 1) - 1)*(a + b 
*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[{a, 
b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]
 

rule 1701
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x 
_Symbol] :> Simp[(-d^(2*n - 1))*(d*x)^(m - 2*n + 1)*(2*a + b*x^n)*((a + b*x 
^n + c*x^(2*n))^(p + 1)/(n*(p + 1)*(b^2 - 4*a*c))), x] + Simp[d^(2*n)/(n*(p 
 + 1)*(b^2 - 4*a*c))   Int[(d*x)^(m - 2*n)*(2*a*(m - 2*n + 1) + b*(m + n*(2 
*p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^(p + 1), x], x] /; FreeQ[{a, b, c 
, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && ILtQ[p, -1 
] && GtQ[m, 2*n - 1]
 

rule 1752
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x 
_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q)) 
   Int[1/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   I 
nt[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2 
, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 
 - 4*a*c] ||  !IGtQ[n/2, 0])
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.50 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.24

method result size
derivativedivides \(\frac {-\frac {b \,x^{\frac {5}{2}}}{2 \left (4 a c -b^{2}\right )}-\frac {a \sqrt {x}}{4 a c -b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-3 \textit {\_R}^{4} b +2 a \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{32 a c -8 b^{2}}\) \(118\)
default \(\frac {-\frac {b \,x^{\frac {5}{2}}}{2 \left (4 a c -b^{2}\right )}-\frac {a \sqrt {x}}{4 a c -b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-3 \textit {\_R}^{4} b +2 a \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{32 a c -8 b^{2}}\) \(118\)

Input:

int(x^(7/2)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)
 

Output:

2*(-1/4*b/(4*a*c-b^2)*x^(5/2)-1/2*a/(4*a*c-b^2)*x^(1/2))/(c*x^4+b*x^2+a)+1 
/8/(4*a*c-b^2)*sum((-3*_R^4*b+2*a)/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=Roo 
tOf(_Z^8*c+_Z^4*b+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7244 vs. \(2 (383) = 766\).

Time = 0.45 (sec) , antiderivative size = 7244, normalized size of antiderivative = 15.00 \[ \int \frac {x^{7/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(x^(7/2)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{7/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \] Input:

integrate(x**(7/2)/(c*x**4+b*x**2+a)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^{7/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {x^{\frac {7}{2}}}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \] Input:

integrate(x^(7/2)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

-1/2*(2*c*x^(9/2) + b*x^(5/2))/((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + 
(b^3 - 4*a*b*c)*x^2) - integrate(-1/4*(2*c*x^(7/2) + 5*b*x^(3/2))/((b^2*c 
- 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2), x)
 

Giac [F]

\[ \int \frac {x^{7/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {x^{\frac {7}{2}}}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \] Input:

integrate(x^(7/2)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")
 

Output:

integrate(x^(7/2)/(c*x^4 + b*x^2 + a)^2, x)
 

Mupad [B] (verification not implemented)

Time = 23.95 (sec) , antiderivative size = 26432, normalized size of antiderivative = 54.72 \[ \int \frac {x^{7/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \] Input:

int(x^(7/2)/(a + b*x^2 + c*x^4)^2,x)
 

Output:

atan((((((x^(1/2)*(603979776*a^9*b*c^11 - 102400*a^2*b^15*c^4 + 2605056*a^ 
3*b^13*c^5 - 28114944*a^4*b^11*c^6 + 166461440*a^5*b^9*c^7 - 581959680*a^6 
*b^7*c^8 + 1195376640*a^7*b^5*c^9 - 1325400064*a^8*b^3*c^10))/(16*(b^12 + 
4096*a^6*c^6 + 240*a^2*b^8*c^2 - 1280*a^3*b^6*c^3 + 3840*a^4*b^4*c^4 - 614 
4*a^5*b^2*c^5 - 24*a*b^10*c)) - ((-(81*b^17 - 81*b^2*(-(4*a*c - b^2)^15)^( 
1/2) - 983040*a^8*b*c^8 + 960*a^2*b^13*c^2 + 84480*a^3*b^11*c^3 - 719360*a 
^4*b^9*c^4 + 2727936*a^5*b^7*c^5 - 5259264*a^6*b^5*c^6 + 4587520*a^7*b^3*c 
^7 - 1184*a*b^15*c + 4*a*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(b^24*c + 1677 
7216*a^12*c^13 - 48*a*b^22*c^2 + 1056*a^2*b^20*c^3 - 14080*a^3*b^18*c^4 + 
126720*a^4*b^16*c^5 - 811008*a^5*b^14*c^6 + 3784704*a^6*b^12*c^7 - 1297612 
8*a^7*b^10*c^8 + 32440320*a^8*b^8*c^9 - 57671680*a^9*b^6*c^10 + 69206016*a 
^10*b^4*c^11 - 50331648*a^11*b^2*c^12)))^(1/4)*(83886080*a^8*b*c^10 + 2048 
0*a^2*b^13*c^4 - 491520*a^3*b^11*c^5 + 4915200*a^4*b^9*c^6 - 26214400*a^5* 
b^7*c^7 + 78643200*a^6*b^5*c^8 - 125829120*a^7*b^3*c^9))/(2*(b^8 + 256*a^4 
*c^4 + 96*a^2*b^4*c^2 - 256*a^3*b^2*c^3 - 16*a*b^6*c)))*(-(81*b^17 - 81*b^ 
2*(-(4*a*c - b^2)^15)^(1/2) - 983040*a^8*b*c^8 + 960*a^2*b^13*c^2 + 84480* 
a^3*b^11*c^3 - 719360*a^4*b^9*c^4 + 2727936*a^5*b^7*c^5 - 5259264*a^6*b^5* 
c^6 + 4587520*a^7*b^3*c^7 - 1184*a*b^15*c + 4*a*c*(-(4*a*c - b^2)^15)^(1/2 
))/(8192*(b^24*c + 16777216*a^12*c^13 - 48*a*b^22*c^2 + 1056*a^2*b^20*c^3 
- 14080*a^3*b^18*c^4 + 126720*a^4*b^16*c^5 - 811008*a^5*b^14*c^6 + 3784...
 

Reduce [F]

\[ \int \frac {x^{7/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=\int \frac {x^{\frac {7}{2}}}{\left (c \,x^{4}+b \,x^{2}+a \right )^{2}}d x \] Input:

int(x^(7/2)/(c*x^4+b*x^2+a)^2,x)
 

Output:

int(x^(7/2)/(c*x^4+b*x^2+a)^2,x)