\(\int \frac {x^{9/2}}{(a+b x^2+c x^4)^3} \, dx\) [942]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 533 \[ \int \frac {x^{9/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\frac {x^{3/2} \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {3 x^{3/2} \left (5 b^2-4 a c+8 b c x^2\right )}{16 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}-\frac {3 \sqrt [4]{c} \left (11 b^2+20 a c+4 b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{16\ 2^{3/4} \left (b^2-4 a c\right )^{5/2} \sqrt [4]{-b-\sqrt {b^2-4 a c}}}+\frac {3 \sqrt [4]{c} \left (11 b^2+20 a c-4 b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{16\ 2^{3/4} \left (b^2-4 a c\right )^{5/2} \sqrt [4]{-b+\sqrt {b^2-4 a c}}}+\frac {3 \sqrt [4]{c} \left (11 b^2+20 a c+4 b \sqrt {b^2-4 a c}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{16\ 2^{3/4} \left (b^2-4 a c\right )^{5/2} \sqrt [4]{-b-\sqrt {b^2-4 a c}}}-\frac {3 \sqrt [4]{c} \left (11 b^2+20 a c-4 b \sqrt {b^2-4 a c}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{16\ 2^{3/4} \left (b^2-4 a c\right )^{5/2} \sqrt [4]{-b+\sqrt {b^2-4 a c}}} \] Output:

1/4*x^(3/2)*(b*x^2+2*a)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^2-3/16*x^(3/2)*(8*b*c 
*x^2-4*a*c+5*b^2)/(-4*a*c+b^2)^2/(c*x^4+b*x^2+a)-3/32*c^(1/4)*(11*b^2+20*a 
*c+4*b*(-4*a*c+b^2)^(1/2))*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2) 
^(1/2))^(1/4))*2^(1/4)/(-4*a*c+b^2)^(5/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4)+3/ 
32*c^(1/4)*(11*b^2+20*a*c-4*b*(-4*a*c+b^2)^(1/2))*arctan(2^(1/4)*c^(1/4)*x 
^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*2^(1/4)/(-4*a*c+b^2)^(5/2)/(-b+(-4*a 
*c+b^2)^(1/2))^(1/4)+3/32*c^(1/4)*(11*b^2+20*a*c+4*b*(-4*a*c+b^2)^(1/2))*a 
rctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*2^(1/4)/(-4* 
a*c+b^2)^(5/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4)-3/32*c^(1/4)*(11*b^2+20*a*c-4 
*b*(-4*a*c+b^2)^(1/2))*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1 
/2))^(1/4))*2^(1/4)/(-4*a*c+b^2)^(5/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.69 (sec) , antiderivative size = 339, normalized size of antiderivative = 0.64 \[ \int \frac {x^{9/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\frac {1}{64} \left (-\frac {4 x^{3/2} \left (20 a^2 c+a \left (7 b^2+28 b c x^2-12 c^2 x^4\right )+b x^2 \left (11 b^2+39 b c x^2+24 c^2 x^4\right )\right )}{\left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )^2}+\frac {8 \text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {b^2 \log \left (\sqrt {x}-\text {$\#$1}\right )-10 a c \log \left (\sqrt {x}-\text {$\#$1}\right )+b c \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}+2 c \text {$\#$1}^5}\&\right ]}{a b^2 c-4 a^2 c^2}-\frac {\text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {8 b^4 \log \left (\sqrt {x}-\text {$\#$1}\right )-133 a b^2 c \log \left (\sqrt {x}-\text {$\#$1}\right )+260 a^2 c^2 \log \left (\sqrt {x}-\text {$\#$1}\right )+8 b^3 c \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4-8 a b c^2 \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}+2 c \text {$\#$1}^5}\&\right ]}{a c \left (b^2-4 a c\right )^2}\right ) \] Input:

Integrate[x^(9/2)/(a + b*x^2 + c*x^4)^3,x]
 

Output:

((-4*x^(3/2)*(20*a^2*c + a*(7*b^2 + 28*b*c*x^2 - 12*c^2*x^4) + b*x^2*(11*b 
^2 + 39*b*c*x^2 + 24*c^2*x^4)))/((b^2 - 4*a*c)^2*(a + b*x^2 + c*x^4)^2) + 
(8*RootSum[a + b*#1^4 + c*#1^8 & , (b^2*Log[Sqrt[x] - #1] - 10*a*c*Log[Sqr 
t[x] - #1] + b*c*Log[Sqrt[x] - #1]*#1^4)/(b*#1 + 2*c*#1^5) & ])/(a*b^2*c - 
 4*a^2*c^2) - RootSum[a + b*#1^4 + c*#1^8 & , (8*b^4*Log[Sqrt[x] - #1] - 1 
33*a*b^2*c*Log[Sqrt[x] - #1] + 260*a^2*c^2*Log[Sqrt[x] - #1] + 8*b^3*c*Log 
[Sqrt[x] - #1]*#1^4 - 8*a*b*c^2*Log[Sqrt[x] - #1]*#1^4)/(b*#1 + 2*c*#1^5) 
& ]/(a*c*(b^2 - 4*a*c)^2))/64
 

Rubi [A] (verified)

Time = 1.27 (sec) , antiderivative size = 480, normalized size of antiderivative = 0.90, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {1435, 1701, 27, 1824, 27, 1834, 27, 827, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{9/2}}{\left (a+b x^2+c x^4\right )^3} \, dx\)

\(\Big \downarrow \) 1435

\(\displaystyle 2 \int \frac {x^5}{\left (c x^4+b x^2+a\right )^3}d\sqrt {x}\)

\(\Big \downarrow \) 1701

\(\displaystyle 2 \left (\frac {x^{3/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\int \frac {3 x \left (2 a-3 b x^2\right )}{\left (c x^4+b x^2+a\right )^2}d\sqrt {x}}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \left (\frac {x^{3/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {3 \int \frac {x \left (2 a-3 b x^2\right )}{\left (c x^4+b x^2+a\right )^2}d\sqrt {x}}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 1824

\(\displaystyle 2 \left (\frac {x^{3/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {3 \left (\frac {x^{3/2} \left (-4 a c+5 b^2+8 b c x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int \frac {a x \left (7 b^2-8 c x^2 b+20 a c\right )}{c x^4+b x^2+a}d\sqrt {x}}{4 a \left (b^2-4 a c\right )}\right )}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \left (\frac {x^{3/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {3 \left (\frac {x^{3/2} \left (-4 a c+5 b^2+8 b c x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int \frac {x \left (7 b^2-8 c x^2 b+20 a c\right )}{c x^4+b x^2+a}d\sqrt {x}}{4 \left (b^2-4 a c\right )}\right )}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 1834

\(\displaystyle 2 \left (\frac {x^{3/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {3 \left (\frac {x^{3/2} \left (-4 a c+5 b^2+8 b c x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {-c \left (4 b-\frac {20 a c+11 b^2}{\sqrt {b^2-4 a c}}\right ) \int \frac {2 x}{2 c x^2+b-\sqrt {b^2-4 a c}}d\sqrt {x}-c \left (\frac {20 a c+11 b^2}{\sqrt {b^2-4 a c}}+4 b\right ) \int \frac {2 x}{2 c x^2+b+\sqrt {b^2-4 a c}}d\sqrt {x}}{4 \left (b^2-4 a c\right )}\right )}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \left (\frac {x^{3/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {3 \left (\frac {x^{3/2} \left (-4 a c+5 b^2+8 b c x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {-2 c \left (4 b-\frac {20 a c+11 b^2}{\sqrt {b^2-4 a c}}\right ) \int \frac {x}{2 c x^2+b-\sqrt {b^2-4 a c}}d\sqrt {x}-2 c \left (\frac {20 a c+11 b^2}{\sqrt {b^2-4 a c}}+4 b\right ) \int \frac {x}{2 c x^2+b+\sqrt {b^2-4 a c}}d\sqrt {x}}{4 \left (b^2-4 a c\right )}\right )}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 827

\(\displaystyle 2 \left (\frac {x^{3/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {3 \left (\frac {x^{3/2} \left (-4 a c+5 b^2+8 b c x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {-2 c \left (\frac {20 a c+11 b^2}{\sqrt {b^2-4 a c}}+4 b\right ) \left (\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {-b-\sqrt {b^2-4 a c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )-2 c \left (4 b-\frac {20 a c+11 b^2}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {\sqrt {b^2-4 a c}-b}}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )}{4 \left (b^2-4 a c\right )}\right )}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle 2 \left (\frac {x^{3/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {3 \left (\frac {x^{3/2} \left (-4 a c+5 b^2+8 b c x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {-2 c \left (\frac {20 a c+11 b^2}{\sqrt {b^2-4 a c}}+4 b\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )-2 c \left (4 b-\frac {20 a c+11 b^2}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )}{4 \left (b^2-4 a c\right )}\right )}{8 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle 2 \left (\frac {x^{3/2} \left (2 a+b x^2\right )}{8 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {3 \left (\frac {x^{3/2} \left (-4 a c+5 b^2+8 b c x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {-2 c \left (\frac {20 a c+11 b^2}{\sqrt {b^2-4 a c}}+4 b\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )-2 c \left (4 b-\frac {20 a c+11 b^2}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{4 \left (b^2-4 a c\right )}\right )}{8 \left (b^2-4 a c\right )}\right )\)

Input:

Int[x^(9/2)/(a + b*x^2 + c*x^4)^3,x]
 

Output:

2*((x^(3/2)*(2*a + b*x^2))/(8*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2) - (3*(( 
x^(3/2)*(5*b^2 - 4*a*c + 8*b*c*x^2))/(4*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) 
 - (-2*c*(4*b + (11*b^2 + 20*a*c)/Sqrt[b^2 - 4*a*c])*(ArcTan[(2^(1/4)*c^(1 
/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b - Sqrt 
[b^2 - 4*a*c])^(1/4)) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 
 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b - Sqrt[b^2 - 4*a*c])^(1/4))) - 2*c* 
(4*b - (11*b^2 + 20*a*c)/Sqrt[b^2 - 4*a*c])*(ArcTan[(2^(1/4)*c^(1/4)*Sqrt[ 
x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b + Sqrt[b^2 - 4* 
a*c])^(1/4)) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^ 
(1/4)]/(2*2^(3/4)*c^(3/4)*(-b + Sqrt[b^2 - 4*a*c])^(1/4))))/(4*(b^2 - 4*a* 
c))))/(8*(b^2 - 4*a*c)))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 1435
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> With[{k = Denominator[m]}, Simp[k/d   Subst[Int[x^(k*(m + 1) - 1)*(a + b 
*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[{a, 
b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]
 

rule 1701
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x 
_Symbol] :> Simp[(-d^(2*n - 1))*(d*x)^(m - 2*n + 1)*(2*a + b*x^n)*((a + b*x 
^n + c*x^(2*n))^(p + 1)/(n*(p + 1)*(b^2 - 4*a*c))), x] + Simp[d^(2*n)/(n*(p 
 + 1)*(b^2 - 4*a*c))   Int[(d*x)^(m - 2*n)*(2*a*(m - 2*n + 1) + b*(m + n*(2 
*p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^(p + 1), x], x] /; FreeQ[{a, b, c 
, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && ILtQ[p, -1 
] && GtQ[m, 2*n - 1]
 

rule 1824
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + ( 
c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[(-(f*x)^(m + 1))*(a + b*x^n + c*x^ 
(2*n))^(p + 1)*((d*(b^2 - 2*a*c) - a*b*e + (b*d - 2*a*e)*c*x^n)/(a*f*n*(p + 
 1)*(b^2 - 4*a*c))), x] + Simp[1/(a*n*(p + 1)*(b^2 - 4*a*c))   Int[(f*x)^m* 
(a + b*x^n + c*x^(2*n))^(p + 1)*Simp[d*(b^2*(m + n*(p + 1) + 1) - 2*a*c*(m 
+ 2*n*(p + 1) + 1)) - a*b*e*(m + 1) + c*(m + n*(2*p + 3) + 1)*(b*d - 2*a*e) 
*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[n2, 2*n] && NeQ[ 
b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[p, -1] && IntegerQ[p]
 

rule 1834
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + 
 (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + 
 (2*c*d - b*e)/(2*q))   Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 
 - (2*c*d - b*e)/(2*q))   Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ 
[{a, b, c, d, e, f, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n 
, 0]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 2.48 (sec) , antiderivative size = 244, normalized size of antiderivative = 0.46

method result size
derivativedivides \(\frac {-\frac {a \left (20 a c +7 b^{2}\right ) x^{\frac {3}{2}}}{16 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {b \left (28 a c +11 b^{2}\right ) x^{\frac {7}{2}}}{16 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}+\frac {3 \left (4 a c -13 b^{2}\right ) c \,x^{\frac {11}{2}}}{16 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {3 b \,c^{2} x^{\frac {15}{2}}}{2 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}}{\left (c \,x^{4}+b \,x^{2}+a \right )^{2}}+\frac {3 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-8 b c \,\textit {\_R}^{6}+\left (20 a c +7 b^{2}\right ) \textit {\_R}^{2}\right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}\right )}{64 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}\) \(244\)
default \(\frac {-\frac {a \left (20 a c +7 b^{2}\right ) x^{\frac {3}{2}}}{16 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {b \left (28 a c +11 b^{2}\right ) x^{\frac {7}{2}}}{16 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}+\frac {3 \left (4 a c -13 b^{2}\right ) c \,x^{\frac {11}{2}}}{16 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {3 b \,c^{2} x^{\frac {15}{2}}}{2 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}}{\left (c \,x^{4}+b \,x^{2}+a \right )^{2}}+\frac {3 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-8 b c \,\textit {\_R}^{6}+\left (20 a c +7 b^{2}\right ) \textit {\_R}^{2}\right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}\right )}{64 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}\) \(244\)

Input:

int(x^(9/2)/(c*x^4+b*x^2+a)^3,x,method=_RETURNVERBOSE)
 

Output:

2*(-1/32*a*(20*a*c+7*b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^(3/2)-1/32*b*(28*a* 
c+11*b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^(7/2)+3/32*(4*a*c-13*b^2)*c/(16*a^2 
*c^2-8*a*b^2*c+b^4)*x^(11/2)-3/4*b*c^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x^(15/2) 
)/(c*x^4+b*x^2+a)^2+3/64/(16*a^2*c^2-8*a*b^2*c+b^4)*sum((-8*b*c*_R^6+(20*a 
*c+7*b^2)*_R^2)/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a 
))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 18451 vs. \(2 (429) = 858\).

Time = 24.47 (sec) , antiderivative size = 18451, normalized size of antiderivative = 34.62 \[ \int \frac {x^{9/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Too large to display} \] Input:

integrate(x^(9/2)/(c*x^4+b*x^2+a)^3,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{9/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Timed out} \] Input:

integrate(x**(9/2)/(c*x**4+b*x**2+a)**3,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^{9/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\int { \frac {x^{\frac {9}{2}}}{{\left (c x^{4} + b x^{2} + a\right )}^{3}} \,d x } \] Input:

integrate(x^(9/2)/(c*x^4+b*x^2+a)^3,x, algorithm="maxima")
 

Output:

-1/16*(24*b*c^2*x^(15/2) + 3*(13*b^2*c - 4*a*c^2)*x^(11/2) + (11*b^3 + 28* 
a*b*c)*x^(7/2) + (7*a*b^2 + 20*a^2*c)*x^(3/2))/((b^4*c^2 - 8*a*b^2*c^3 + 1 
6*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8* 
a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8 
*a^2*b^3*c + 16*a^3*b*c^2)*x^2) - integrate(3/32*(8*b*c*x^(5/2) - (7*b^2 + 
 20*a*c)*sqrt(x))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2 + (b^4*c - 8*a*b^2*c^2 
 + 16*a^2*c^3)*x^4 + (b^5 - 8*a*b^3*c + 16*a^2*b*c^2)*x^2), x)
 

Giac [F]

\[ \int \frac {x^{9/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\int { \frac {x^{\frac {9}{2}}}{{\left (c x^{4} + b x^{2} + a\right )}^{3}} \,d x } \] Input:

integrate(x^(9/2)/(c*x^4+b*x^2+a)^3,x, algorithm="giac")
 

Output:

integrate(x^(9/2)/(c*x^4 + b*x^2 + a)^3, x)
 

Mupad [B] (verification not implemented)

Time = 21.36 (sec) , antiderivative size = 37678, normalized size of antiderivative = 70.69 \[ \int \frac {x^{9/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Too large to display} \] Input:

int(x^(9/2)/(a + b*x^2 + c*x^4)^3,x)
 

Output:

- atan(((((27*(5754585088*a*b^27*c^4 + 309622474381721600*a^14*b*c^17 - 16 
1128382464*a^2*b^25*c^5 + 1626181992448*a^3*b^23*c^6 - 3983582167040*a^4*b 
^21*c^7 - 56328496087040*a^5*b^19*c^8 + 557813172535296*a^6*b^17*c^9 - 196 
1803621859328*a^7*b^15*c^10 + 715782069682176*a^8*b^13*c^11 + 158164747655 
57760*a^9*b^11*c^12 - 39296545576714240*a^10*b^9*c^13 - 32756650414702592* 
a^11*b^7*c^14 + 300756012615335936*a^12*b^5*c^15 - 517069532217475072*a^13 
*b^3*c^16))/(268435456*(b^28 + 268435456*a^14*c^14 + 1456*a^2*b^24*c^2 - 2 
3296*a^3*b^22*c^3 + 256256*a^4*b^20*c^4 - 2050048*a^5*b^18*c^5 + 12300288* 
a^6*b^16*c^6 - 56229888*a^7*b^14*c^7 + 196804608*a^8*b^12*c^8 - 524812288* 
a^9*b^10*c^9 + 1049624576*a^10*b^8*c^10 - 1526726656*a^11*b^6*c^11 + 15267 
26656*a^12*b^4*c^12 - 939524096*a^13*b^2*c^13 - 56*a*b^26*c)) - (9*x^(1/2) 
*((81*(2401*b^4*(-(4*a*c - b^2)^25)^(1/2) - 2401*b^29 - 704643072000*a^14* 
b*c^14 + 1323600*a^2*b^25*c^2 - 28243200*a^3*b^23*c^3 + 271415040*a^4*b^21 
*c^4 - 1437284352*a^5*b^19*c^5 + 3989852160*a^6*b^17*c^6 - 2793799680*a^7* 
b^15*c^7 - 13327073280*a^8*b^13*c^8 + 19977994240*a^9*b^11*c^9 + 660592394 
24*a^10*b^9*c^10 - 143696855040*a^11*b^7*c^11 - 230770606080*a^12*b^5*c^12 
 + 887850270720*a^13*b^3*c^13 + 10000*a^2*c^2*(-(4*a*c - b^2)^25)^(1/2) + 
9400*a*b^27*c + 9400*a*b^2*c*(-(4*a*c - b^2)^25)^(1/2)))/(33554432*(a*b^40 
 + 1099511627776*a^21*c^20 - 80*a^2*b^38*c + 3040*a^3*b^36*c^2 - 72960*a^4 
*b^34*c^3 + 1240320*a^5*b^32*c^4 - 15876096*a^6*b^30*c^5 + 158760960*a^...
 

Reduce [F]

\[ \int \frac {x^{9/2}}{\left (a+b x^2+c x^4\right )^3} \, dx=\int \frac {x^{\frac {9}{2}}}{\left (c \,x^{4}+b \,x^{2}+a \right )^{3}}d x \] Input:

int(x^(9/2)/(c*x^4+b*x^2+a)^3,x)
 

Output:

int(x^(9/2)/(c*x^4+b*x^2+a)^3,x)