\(\int \frac {(d^2-e^2 x^4)^{3/2}}{(d-e x^2)^7} \, dx\) [103]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 292 \[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d-e x^2\right )^7} \, dx=\frac {2 x \sqrt {d^2-e^2 x^4}}{9 \left (d-e x^2\right )^5}+\frac {2 x \sqrt {d^2-e^2 x^4}}{21 d \left (d-e x^2\right )^4}+\frac {73 x \sqrt {d^2-e^2 x^4}}{630 d^2 \left (d-e x^2\right )^3}+\frac {16 x \sqrt {d^2-e^2 x^4}}{105 d^3 \left (d-e x^2\right )^2}+\frac {17 x \sqrt {d^2-e^2 x^4}}{60 d^4 \left (d-e x^2\right )}-\frac {17 \sqrt {1-\frac {e^2 x^4}{d^2}} E\left (\left .\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right |-1\right )}{60 d^{5/2} \sqrt {e} \sqrt {d^2-e^2 x^4}}+\frac {29 \sqrt {1-\frac {e^2 x^4}{d^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ),-1\right )}{70 d^{5/2} \sqrt {e} \sqrt {d^2-e^2 x^4}} \] Output:

2/9*x*(-e^2*x^4+d^2)^(1/2)/(-e*x^2+d)^5+2/21*x*(-e^2*x^4+d^2)^(1/2)/d/(-e* 
x^2+d)^4+73/630*x*(-e^2*x^4+d^2)^(1/2)/d^2/(-e*x^2+d)^3+16/105*x*(-e^2*x^4 
+d^2)^(1/2)/d^3/(-e*x^2+d)^2+17/60*x*(-e^2*x^4+d^2)^(1/2)/d^4/(-e*x^2+d)-1 
7/60*(1-e^2*x^4/d^2)^(1/2)*EllipticE(e^(1/2)*x/d^(1/2),I)/d^(5/2)/e^(1/2)/ 
(-e^2*x^4+d^2)^(1/2)+29/70*(1-e^2*x^4/d^2)^(1/2)*EllipticF(e^(1/2)*x/d^(1/ 
2),I)/d^(5/2)/e^(1/2)/(-e^2*x^4+d^2)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 11.06 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.55 \[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d-e x^2\right )^7} \, dx=\frac {\frac {x \left (d+e x^2\right ) \left (1095 d^4-2416 d^3 e x^2+2864 d^2 e^2 x^4-1620 d e^3 x^6+357 e^4 x^8\right )}{\left (d-e x^2\right )^4}+\frac {3 i d \sqrt {1-\frac {e^2 x^4}{d^2}} \left (119 E\left (\left .i \text {arcsinh}\left (\sqrt {-\frac {e}{d}} x\right )\right |-1\right )-174 \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {e}{d}} x\right ),-1\right )\right )}{\sqrt {-\frac {e}{d}}}}{1260 d^4 \sqrt {d^2-e^2 x^4}} \] Input:

Integrate[(d^2 - e^2*x^4)^(3/2)/(d - e*x^2)^7,x]
 

Output:

((x*(d + e*x^2)*(1095*d^4 - 2416*d^3*e*x^2 + 2864*d^2*e^2*x^4 - 1620*d*e^3 
*x^6 + 357*e^4*x^8))/(d - e*x^2)^4 + ((3*I)*d*Sqrt[1 - (e^2*x^4)/d^2]*(119 
*EllipticE[I*ArcSinh[Sqrt[-(e/d)]*x], -1] - 174*EllipticF[I*ArcSinh[Sqrt[- 
(e/d)]*x], -1]))/Sqrt[-(e/d)])/(1260*d^4*Sqrt[d^2 - e^2*x^4])
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 359, normalized size of antiderivative = 1.23, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {1396, 315, 25, 27, 402, 27, 402, 27, 402, 27, 402, 27, 399, 289, 329, 327, 765, 762}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d-e x^2\right )^7} \, dx\)

\(\Big \downarrow \) 1396

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \int \frac {\left (e x^2+d\right )^{3/2}}{\left (d-e x^2\right )^{11/2}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 315

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}-\frac {\int -\frac {d e \left (5 e x^2+7 d\right )}{\left (d-e x^2\right )^{9/2} \sqrt {e x^2+d}}dx}{9 d e}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {\int \frac {d e \left (5 e x^2+7 d\right )}{\left (d-e x^2\right )^{9/2} \sqrt {e x^2+d}}dx}{9 d e}+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \int \frac {5 e x^2+7 d}{\left (d-e x^2\right )^{9/2} \sqrt {e x^2+d}}dx+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \left (\frac {\int \frac {2 d e \left (30 e x^2+43 d\right )}{\left (d-e x^2\right )^{7/2} \sqrt {e x^2+d}}dx}{14 d^2 e}+\frac {6 x \sqrt {d+e x^2}}{7 d \left (d-e x^2\right )^{7/2}}\right )+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \left (\frac {\int \frac {30 e x^2+43 d}{\left (d-e x^2\right )^{7/2} \sqrt {e x^2+d}}dx}{7 d}+\frac {6 x \sqrt {d+e x^2}}{7 d \left (d-e x^2\right )^{7/2}}\right )+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \left (\frac {\frac {\int \frac {3 d e \left (73 e x^2+119 d\right )}{\left (d-e x^2\right )^{5/2} \sqrt {e x^2+d}}dx}{10 d^2 e}+\frac {73 x \sqrt {d+e x^2}}{10 d \left (d-e x^2\right )^{5/2}}}{7 d}+\frac {6 x \sqrt {d+e x^2}}{7 d \left (d-e x^2\right )^{7/2}}\right )+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \left (\frac {\frac {3 \int \frac {73 e x^2+119 d}{\left (d-e x^2\right )^{5/2} \sqrt {e x^2+d}}dx}{10 d}+\frac {73 x \sqrt {d+e x^2}}{10 d \left (d-e x^2\right )^{5/2}}}{7 d}+\frac {6 x \sqrt {d+e x^2}}{7 d \left (d-e x^2\right )^{7/2}}\right )+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \left (\frac {\frac {3 \left (\frac {\int \frac {6 d e \left (32 e x^2+87 d\right )}{\left (d-e x^2\right )^{3/2} \sqrt {e x^2+d}}dx}{6 d^2 e}+\frac {32 x \sqrt {d+e x^2}}{d \left (d-e x^2\right )^{3/2}}\right )}{10 d}+\frac {73 x \sqrt {d+e x^2}}{10 d \left (d-e x^2\right )^{5/2}}}{7 d}+\frac {6 x \sqrt {d+e x^2}}{7 d \left (d-e x^2\right )^{7/2}}\right )+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \left (\frac {\frac {3 \left (\frac {\int \frac {32 e x^2+87 d}{\left (d-e x^2\right )^{3/2} \sqrt {e x^2+d}}dx}{d}+\frac {32 x \sqrt {d+e x^2}}{d \left (d-e x^2\right )^{3/2}}\right )}{10 d}+\frac {73 x \sqrt {d+e x^2}}{10 d \left (d-e x^2\right )^{5/2}}}{7 d}+\frac {6 x \sqrt {d+e x^2}}{7 d \left (d-e x^2\right )^{7/2}}\right )+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \left (\frac {\frac {3 \left (\frac {\frac {\int \frac {d e \left (55 d-119 e x^2\right )}{\sqrt {d-e x^2} \sqrt {e x^2+d}}dx}{2 d^2 e}+\frac {119 x \sqrt {d+e x^2}}{2 d \sqrt {d-e x^2}}}{d}+\frac {32 x \sqrt {d+e x^2}}{d \left (d-e x^2\right )^{3/2}}\right )}{10 d}+\frac {73 x \sqrt {d+e x^2}}{10 d \left (d-e x^2\right )^{5/2}}}{7 d}+\frac {6 x \sqrt {d+e x^2}}{7 d \left (d-e x^2\right )^{7/2}}\right )+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \left (\frac {\frac {3 \left (\frac {\frac {\int \frac {55 d-119 e x^2}{\sqrt {d-e x^2} \sqrt {e x^2+d}}dx}{2 d}+\frac {119 x \sqrt {d+e x^2}}{2 d \sqrt {d-e x^2}}}{d}+\frac {32 x \sqrt {d+e x^2}}{d \left (d-e x^2\right )^{3/2}}\right )}{10 d}+\frac {73 x \sqrt {d+e x^2}}{10 d \left (d-e x^2\right )^{5/2}}}{7 d}+\frac {6 x \sqrt {d+e x^2}}{7 d \left (d-e x^2\right )^{7/2}}\right )+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \left (\frac {\frac {3 \left (\frac {\frac {174 d \int \frac {1}{\sqrt {d-e x^2} \sqrt {e x^2+d}}dx-119 \int \frac {\sqrt {e x^2+d}}{\sqrt {d-e x^2}}dx}{2 d}+\frac {119 x \sqrt {d+e x^2}}{2 d \sqrt {d-e x^2}}}{d}+\frac {32 x \sqrt {d+e x^2}}{d \left (d-e x^2\right )^{3/2}}\right )}{10 d}+\frac {73 x \sqrt {d+e x^2}}{10 d \left (d-e x^2\right )^{5/2}}}{7 d}+\frac {6 x \sqrt {d+e x^2}}{7 d \left (d-e x^2\right )^{7/2}}\right )+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 289

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \left (\frac {\frac {3 \left (\frac {\frac {\frac {174 d \sqrt {d^2-e^2 x^4} \int \frac {1}{\sqrt {d^2-e^2 x^4}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}-119 \int \frac {\sqrt {e x^2+d}}{\sqrt {d-e x^2}}dx}{2 d}+\frac {119 x \sqrt {d+e x^2}}{2 d \sqrt {d-e x^2}}}{d}+\frac {32 x \sqrt {d+e x^2}}{d \left (d-e x^2\right )^{3/2}}\right )}{10 d}+\frac {73 x \sqrt {d+e x^2}}{10 d \left (d-e x^2\right )^{5/2}}}{7 d}+\frac {6 x \sqrt {d+e x^2}}{7 d \left (d-e x^2\right )^{7/2}}\right )+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 329

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \left (\frac {\frac {3 \left (\frac {\frac {\frac {174 d \sqrt {d^2-e^2 x^4} \int \frac {1}{\sqrt {d^2-e^2 x^4}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}-\frac {119 d \sqrt {1-\frac {e^2 x^4}{d^2}} \int \frac {\sqrt {\frac {e x^2}{d}+1}}{\sqrt {1-\frac {e x^2}{d}}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}}{2 d}+\frac {119 x \sqrt {d+e x^2}}{2 d \sqrt {d-e x^2}}}{d}+\frac {32 x \sqrt {d+e x^2}}{d \left (d-e x^2\right )^{3/2}}\right )}{10 d}+\frac {73 x \sqrt {d+e x^2}}{10 d \left (d-e x^2\right )^{5/2}}}{7 d}+\frac {6 x \sqrt {d+e x^2}}{7 d \left (d-e x^2\right )^{7/2}}\right )+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \left (\frac {\frac {3 \left (\frac {\frac {\frac {174 d \sqrt {d^2-e^2 x^4} \int \frac {1}{\sqrt {d^2-e^2 x^4}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}-\frac {119 d^{3/2} \sqrt {1-\frac {e^2 x^4}{d^2}} E\left (\left .\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right |-1\right )}{\sqrt {e} \sqrt {d-e x^2} \sqrt {d+e x^2}}}{2 d}+\frac {119 x \sqrt {d+e x^2}}{2 d \sqrt {d-e x^2}}}{d}+\frac {32 x \sqrt {d+e x^2}}{d \left (d-e x^2\right )^{3/2}}\right )}{10 d}+\frac {73 x \sqrt {d+e x^2}}{10 d \left (d-e x^2\right )^{5/2}}}{7 d}+\frac {6 x \sqrt {d+e x^2}}{7 d \left (d-e x^2\right )^{7/2}}\right )+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 765

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \left (\frac {\frac {3 \left (\frac {\frac {\frac {174 d \sqrt {1-\frac {e^2 x^4}{d^2}} \int \frac {1}{\sqrt {1-\frac {e^2 x^4}{d^2}}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}-\frac {119 d^{3/2} \sqrt {1-\frac {e^2 x^4}{d^2}} E\left (\left .\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right |-1\right )}{\sqrt {e} \sqrt {d-e x^2} \sqrt {d+e x^2}}}{2 d}+\frac {119 x \sqrt {d+e x^2}}{2 d \sqrt {d-e x^2}}}{d}+\frac {32 x \sqrt {d+e x^2}}{d \left (d-e x^2\right )^{3/2}}\right )}{10 d}+\frac {73 x \sqrt {d+e x^2}}{10 d \left (d-e x^2\right )^{5/2}}}{7 d}+\frac {6 x \sqrt {d+e x^2}}{7 d \left (d-e x^2\right )^{7/2}}\right )+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 762

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {1}{9} \left (\frac {\frac {3 \left (\frac {\frac {\frac {174 d^{3/2} \sqrt {1-\frac {e^2 x^4}{d^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ),-1\right )}{\sqrt {e} \sqrt {d-e x^2} \sqrt {d+e x^2}}-\frac {119 d^{3/2} \sqrt {1-\frac {e^2 x^4}{d^2}} E\left (\left .\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right |-1\right )}{\sqrt {e} \sqrt {d-e x^2} \sqrt {d+e x^2}}}{2 d}+\frac {119 x \sqrt {d+e x^2}}{2 d \sqrt {d-e x^2}}}{d}+\frac {32 x \sqrt {d+e x^2}}{d \left (d-e x^2\right )^{3/2}}\right )}{10 d}+\frac {73 x \sqrt {d+e x^2}}{10 d \left (d-e x^2\right )^{5/2}}}{7 d}+\frac {6 x \sqrt {d+e x^2}}{7 d \left (d-e x^2\right )^{7/2}}\right )+\frac {2 x \sqrt {d+e x^2}}{9 \left (d-e x^2\right )^{9/2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

Input:

Int[(d^2 - e^2*x^4)^(3/2)/(d - e*x^2)^7,x]
 

Output:

(Sqrt[d^2 - e^2*x^4]*((2*x*Sqrt[d + e*x^2])/(9*(d - e*x^2)^(9/2)) + ((6*x* 
Sqrt[d + e*x^2])/(7*d*(d - e*x^2)^(7/2)) + ((73*x*Sqrt[d + e*x^2])/(10*d*( 
d - e*x^2)^(5/2)) + (3*((32*x*Sqrt[d + e*x^2])/(d*(d - e*x^2)^(3/2)) + ((1 
19*x*Sqrt[d + e*x^2])/(2*d*Sqrt[d - e*x^2]) + ((-119*d^(3/2)*Sqrt[1 - (e^2 
*x^4)/d^2]*EllipticE[ArcSin[(Sqrt[e]*x)/Sqrt[d]], -1])/(Sqrt[e]*Sqrt[d - e 
*x^2]*Sqrt[d + e*x^2]) + (174*d^(3/2)*Sqrt[1 - (e^2*x^4)/d^2]*EllipticF[Ar 
cSin[(Sqrt[e]*x)/Sqrt[d]], -1])/(Sqrt[e]*Sqrt[d - e*x^2]*Sqrt[d + e*x^2])) 
/(2*d))/d))/(10*d))/(7*d))/9))/(Sqrt[d - e*x^2]*Sqrt[d + e*x^2])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 289
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Sim 
p[(a + b*x^2)^FracPart[p]*((c + d*x^2)^FracPart[p]/(a*c + b*d*x^4)^FracPart 
[p])   Int[(a*c + b*d*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[b* 
c + a*d, 0] &&  !IntegerQ[p]
 

rule 315
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(a*d - c*b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(2*a*b*(p + 1))), 
x] - Simp[1/(2*a*b*(p + 1))   Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 2)*S 
imp[c*(a*d - c*b*(2*p + 3)) + d*(a*d*(2*(q - 1) + 1) - b*c*(2*(p + q) + 1)) 
*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, - 
1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, x]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 329
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
a*(Sqrt[1 - b^2*(x^4/a^2)]/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]))   Int[Sqrt[1 
+ b*(x^2/a)]/Sqrt[1 - b*(x^2/a)], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b 
*c + a*d, 0] &&  !(LtQ[a*c, 0] && GtQ[a*b, 0])
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 765
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[Sqrt[1 + b*(x^4/a)]/Sqrt 
[a + b*x^4]   Int[1/Sqrt[1 + b*(x^4/a)], x], x] /; FreeQ[{a, b}, x] && NegQ 
[b/a] &&  !GtQ[a, 0]
 

rule 1396
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x 
_Symbol] :> Simp[(a + c*x^(2*n))^FracPart[p]/((d + e*x^n)^FracPart[p]*(a/d 
+ c*(x^n/e))^FracPart[p])   Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, 
x], x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a* 
e^2, 0] &&  !IntegerQ[p] &&  !(EqQ[q, 1] && EqQ[n, 2])
 
Maple [A] (verified)

Time = 6.68 (sec) , antiderivative size = 328, normalized size of antiderivative = 1.12

method result size
default \(-\frac {2 x \sqrt {-e^{2} x^{4}+d^{2}}}{9 e^{5} \left (x^{2}-\frac {d}{e}\right )^{5}}+\frac {2 x \sqrt {-e^{2} x^{4}+d^{2}}}{21 d \,e^{4} \left (x^{2}-\frac {d}{e}\right )^{4}}-\frac {73 x \sqrt {-e^{2} x^{4}+d^{2}}}{630 d^{2} e^{3} \left (x^{2}-\frac {d}{e}\right )^{3}}+\frac {16 x \sqrt {-e^{2} x^{4}+d^{2}}}{105 e^{2} d^{3} \left (x^{2}-\frac {d}{e}\right )^{2}}-\frac {17 \left (-e^{2} x^{2}-d e \right ) x}{60 d^{4} e \sqrt {\left (x^{2}-\frac {d}{e}\right ) \left (-e^{2} x^{2}-d e \right )}}+\frac {11 \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )}{84 d^{3} \sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}+\frac {17 \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {e}{d}}, i\right )\right )}{60 d^{3} \sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}\) \(328\)
elliptic \(-\frac {2 x \sqrt {-e^{2} x^{4}+d^{2}}}{9 e^{5} \left (x^{2}-\frac {d}{e}\right )^{5}}+\frac {2 x \sqrt {-e^{2} x^{4}+d^{2}}}{21 d \,e^{4} \left (x^{2}-\frac {d}{e}\right )^{4}}-\frac {73 x \sqrt {-e^{2} x^{4}+d^{2}}}{630 d^{2} e^{3} \left (x^{2}-\frac {d}{e}\right )^{3}}+\frac {16 x \sqrt {-e^{2} x^{4}+d^{2}}}{105 e^{2} d^{3} \left (x^{2}-\frac {d}{e}\right )^{2}}-\frac {17 \left (-e^{2} x^{2}-d e \right ) x}{60 d^{4} e \sqrt {\left (x^{2}-\frac {d}{e}\right ) \left (-e^{2} x^{2}-d e \right )}}+\frac {11 \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )}{84 d^{3} \sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}+\frac {17 \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {e}{d}}, i\right )\right )}{60 d^{3} \sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}\) \(328\)

Input:

int((-e^2*x^4+d^2)^(3/2)/(-e*x^2+d)^7,x,method=_RETURNVERBOSE)
 

Output:

-2/9*x/e^5*(-e^2*x^4+d^2)^(1/2)/(x^2-d/e)^5+2/21/d*x/e^4*(-e^2*x^4+d^2)^(1 
/2)/(x^2-d/e)^4-73/630/d^2/e^3*x*(-e^2*x^4+d^2)^(1/2)/(x^2-d/e)^3+16/105/e 
^2/d^3*x*(-e^2*x^4+d^2)^(1/2)/(x^2-d/e)^2-17/60*(-e^2*x^2-d*e)/d^4*x/e/((x 
^2-d/e)*(-e^2*x^2-d*e))^(1/2)+11/84/d^3/(e/d)^(1/2)*(1-e*x^2/d)^(1/2)*(1+e 
*x^2/d)^(1/2)/(-e^2*x^4+d^2)^(1/2)*EllipticF(x*(e/d)^(1/2),I)+17/60/d^3/(e 
/d)^(1/2)*(1-e*x^2/d)^(1/2)*(1+e*x^2/d)^(1/2)/(-e^2*x^4+d^2)^(1/2)*(Ellipt 
icF(x*(e/d)^(1/2),I)-EllipticE(x*(e/d)^(1/2),I))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 338, normalized size of antiderivative = 1.16 \[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d-e x^2\right )^7} \, dx=-\frac {357 \, {\left (e^{6} x^{10} - 5 \, d e^{5} x^{8} + 10 \, d^{2} e^{4} x^{6} - 10 \, d^{3} e^{3} x^{4} + 5 \, d^{4} e^{2} x^{2} - d^{5} e\right )} \sqrt {\frac {e}{d}} E(\arcsin \left (x \sqrt {\frac {e}{d}}\right )\,|\,-1) - 3 \, {\left ({\left (55 \, d e^{5} + 119 \, e^{6}\right )} x^{10} - 5 \, {\left (55 \, d^{2} e^{4} + 119 \, d e^{5}\right )} x^{8} + 10 \, {\left (55 \, d^{3} e^{3} + 119 \, d^{2} e^{4}\right )} x^{6} - 55 \, d^{6} - 119 \, d^{5} e - 10 \, {\left (55 \, d^{4} e^{2} + 119 \, d^{3} e^{3}\right )} x^{4} + 5 \, {\left (55 \, d^{5} e + 119 \, d^{4} e^{2}\right )} x^{2}\right )} \sqrt {\frac {e}{d}} F(\arcsin \left (x \sqrt {\frac {e}{d}}\right )\,|\,-1) + {\left (357 \, e^{5} x^{9} - 1620 \, d e^{4} x^{7} + 2864 \, d^{2} e^{3} x^{5} - 2416 \, d^{3} e^{2} x^{3} + 1095 \, d^{4} e x\right )} \sqrt {-e^{2} x^{4} + d^{2}}}{1260 \, {\left (d^{4} e^{6} x^{10} - 5 \, d^{5} e^{5} x^{8} + 10 \, d^{6} e^{4} x^{6} - 10 \, d^{7} e^{3} x^{4} + 5 \, d^{8} e^{2} x^{2} - d^{9} e\right )}} \] Input:

integrate((-e^2*x^4+d^2)^(3/2)/(-e*x^2+d)^7,x, algorithm="fricas")
 

Output:

-1/1260*(357*(e^6*x^10 - 5*d*e^5*x^8 + 10*d^2*e^4*x^6 - 10*d^3*e^3*x^4 + 5 
*d^4*e^2*x^2 - d^5*e)*sqrt(e/d)*elliptic_e(arcsin(x*sqrt(e/d)), -1) - 3*(( 
55*d*e^5 + 119*e^6)*x^10 - 5*(55*d^2*e^4 + 119*d*e^5)*x^8 + 10*(55*d^3*e^3 
 + 119*d^2*e^4)*x^6 - 55*d^6 - 119*d^5*e - 10*(55*d^4*e^2 + 119*d^3*e^3)*x 
^4 + 5*(55*d^5*e + 119*d^4*e^2)*x^2)*sqrt(e/d)*elliptic_f(arcsin(x*sqrt(e/ 
d)), -1) + (357*e^5*x^9 - 1620*d*e^4*x^7 + 2864*d^2*e^3*x^5 - 2416*d^3*e^2 
*x^3 + 1095*d^4*e*x)*sqrt(-e^2*x^4 + d^2))/(d^4*e^6*x^10 - 5*d^5*e^5*x^8 + 
 10*d^6*e^4*x^6 - 10*d^7*e^3*x^4 + 5*d^8*e^2*x^2 - d^9*e)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d-e x^2\right )^7} \, dx=\text {Timed out} \] Input:

integrate((-e**2*x**4+d**2)**(3/2)/(-e*x**2+d)**7,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d-e x^2\right )^7} \, dx=\int { -\frac {{\left (-e^{2} x^{4} + d^{2}\right )}^{\frac {3}{2}}}{{\left (e x^{2} - d\right )}^{7}} \,d x } \] Input:

integrate((-e^2*x^4+d^2)^(3/2)/(-e*x^2+d)^7,x, algorithm="maxima")
 

Output:

-integrate((-e^2*x^4 + d^2)^(3/2)/(e*x^2 - d)^7, x)
 

Giac [F]

\[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d-e x^2\right )^7} \, dx=\int { -\frac {{\left (-e^{2} x^{4} + d^{2}\right )}^{\frac {3}{2}}}{{\left (e x^{2} - d\right )}^{7}} \,d x } \] Input:

integrate((-e^2*x^4+d^2)^(3/2)/(-e*x^2+d)^7,x, algorithm="giac")
 

Output:

integrate(-(-e^2*x^4 + d^2)^(3/2)/(e*x^2 - d)^7, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d-e x^2\right )^7} \, dx=\int \frac {{\left (d^2-e^2\,x^4\right )}^{3/2}}{{\left (d-e\,x^2\right )}^7} \,d x \] Input:

int((d^2 - e^2*x^4)^(3/2)/(d - e*x^2)^7,x)
 

Output:

int((d^2 - e^2*x^4)^(3/2)/(d - e*x^2)^7, x)
 

Reduce [F]

\[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d-e x^2\right )^7} \, dx =\text {Too large to display} \] Input:

int((-e^2*x^4+d^2)^(3/2)/(-e*x^2+d)^7,x)
 

Output:

(sqrt(d**2 - e**2*x**4)*x + 4*int(sqrt(d**2 - e**2*x**4)/(d**7 - 5*d**6*e* 
x**2 + 9*d**5*e**2*x**4 - 5*d**4*e**3*x**6 - 5*d**3*e**4*x**8 + 9*d**2*e** 
5*x**10 - 5*d*e**6*x**12 + e**7*x**14),x)*d**7 - 20*int(sqrt(d**2 - e**2*x 
**4)/(d**7 - 5*d**6*e*x**2 + 9*d**5*e**2*x**4 - 5*d**4*e**3*x**6 - 5*d**3* 
e**4*x**8 + 9*d**2*e**5*x**10 - 5*d*e**6*x**12 + e**7*x**14),x)*d**6*e*x** 
2 + 40*int(sqrt(d**2 - e**2*x**4)/(d**7 - 5*d**6*e*x**2 + 9*d**5*e**2*x**4 
 - 5*d**4*e**3*x**6 - 5*d**3*e**4*x**8 + 9*d**2*e**5*x**10 - 5*d*e**6*x**1 
2 + e**7*x**14),x)*d**5*e**2*x**4 - 40*int(sqrt(d**2 - e**2*x**4)/(d**7 - 
5*d**6*e*x**2 + 9*d**5*e**2*x**4 - 5*d**4*e**3*x**6 - 5*d**3*e**4*x**8 + 9 
*d**2*e**5*x**10 - 5*d*e**6*x**12 + e**7*x**14),x)*d**4*e**3*x**6 + 20*int 
(sqrt(d**2 - e**2*x**4)/(d**7 - 5*d**6*e*x**2 + 9*d**5*e**2*x**4 - 5*d**4* 
e**3*x**6 - 5*d**3*e**4*x**8 + 9*d**2*e**5*x**10 - 5*d*e**6*x**12 + e**7*x 
**14),x)*d**3*e**4*x**8 - 4*int(sqrt(d**2 - e**2*x**4)/(d**7 - 5*d**6*e*x* 
*2 + 9*d**5*e**2*x**4 - 5*d**4*e**3*x**6 - 5*d**3*e**4*x**8 + 9*d**2*e**5* 
x**10 - 5*d*e**6*x**12 + e**7*x**14),x)*d**2*e**5*x**10 - 2*int((sqrt(d**2 
 - e**2*x**4)*x**4)/(d**7 - 5*d**6*e*x**2 + 9*d**5*e**2*x**4 - 5*d**4*e**3 
*x**6 - 5*d**3*e**4*x**8 + 9*d**2*e**5*x**10 - 5*d*e**6*x**12 + e**7*x**14 
),x)*d**5*e**2 + 10*int((sqrt(d**2 - e**2*x**4)*x**4)/(d**7 - 5*d**6*e*x** 
2 + 9*d**5*e**2*x**4 - 5*d**4*e**3*x**6 - 5*d**3*e**4*x**8 + 9*d**2*e**5*x 
**10 - 5*d*e**6*x**12 + e**7*x**14),x)*d**4*e**3*x**2 - 20*int((sqrt(d*...