\(\int \frac {(d-e x^2)^2}{\sqrt {d^2-e^2 x^4}} \, dx\) [105]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 144 \[ \int \frac {\left (d-e x^2\right )^2}{\sqrt {d^2-e^2 x^4}} \, dx=-\frac {1}{3} x \sqrt {d^2-e^2 x^4}-\frac {2 d^{5/2} \sqrt {1-\frac {e^2 x^4}{d^2}} E\left (\left .\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right |-1\right )}{\sqrt {e} \sqrt {d^2-e^2 x^4}}+\frac {10 d^{5/2} \sqrt {1-\frac {e^2 x^4}{d^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ),-1\right )}{3 \sqrt {e} \sqrt {d^2-e^2 x^4}} \] Output:

-1/3*x*(-e^2*x^4+d^2)^(1/2)-2*d^(5/2)*(1-e^2*x^4/d^2)^(1/2)*EllipticE(e^(1 
/2)*x/d^(1/2),I)/e^(1/2)/(-e^2*x^4+d^2)^(1/2)+10/3*d^(5/2)*(1-e^2*x^4/d^2) 
^(1/2)*EllipticF(e^(1/2)*x/d^(1/2),I)/e^(1/2)/(-e^2*x^4+d^2)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.08 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.84 \[ \int \frac {\left (d-e x^2\right )^2}{\sqrt {d^2-e^2 x^4}} \, dx=\frac {-d^2 x+e^2 x^5+4 d^2 x \sqrt {1-\frac {e^2 x^4}{d^2}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\frac {e^2 x^4}{d^2}\right )-2 d e x^3 \sqrt {1-\frac {e^2 x^4}{d^2}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},\frac {e^2 x^4}{d^2}\right )}{3 \sqrt {d^2-e^2 x^4}} \] Input:

Integrate[(d - e*x^2)^2/Sqrt[d^2 - e^2*x^4],x]
 

Output:

(-(d^2*x) + e^2*x^5 + 4*d^2*x*Sqrt[1 - (e^2*x^4)/d^2]*Hypergeometric2F1[1/ 
4, 1/2, 5/4, (e^2*x^4)/d^2] - 2*d*e*x^3*Sqrt[1 - (e^2*x^4)/d^2]*Hypergeome 
tric2F1[1/2, 3/4, 7/4, (e^2*x^4)/d^2])/(3*Sqrt[d^2 - e^2*x^4])
 

Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.45, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {1396, 318, 27, 399, 289, 329, 327, 765, 762}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (d-e x^2\right )^2}{\sqrt {d^2-e^2 x^4}} \, dx\)

\(\Big \downarrow \) 1396

\(\displaystyle \frac {\sqrt {d-e x^2} \sqrt {d+e x^2} \int \frac {\left (d-e x^2\right )^{3/2}}{\sqrt {e x^2+d}}dx}{\sqrt {d^2-e^2 x^4}}\)

\(\Big \downarrow \) 318

\(\displaystyle \frac {\sqrt {d-e x^2} \sqrt {d+e x^2} \left (\frac {\int \frac {2 d e \left (2 d-3 e x^2\right )}{\sqrt {d-e x^2} \sqrt {e x^2+d}}dx}{3 e}-\frac {1}{3} x \sqrt {d-e x^2} \sqrt {d+e x^2}\right )}{\sqrt {d^2-e^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {d-e x^2} \sqrt {d+e x^2} \left (\frac {2}{3} d \int \frac {2 d-3 e x^2}{\sqrt {d-e x^2} \sqrt {e x^2+d}}dx-\frac {1}{3} x \sqrt {d-e x^2} \sqrt {d+e x^2}\right )}{\sqrt {d^2-e^2 x^4}}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {\sqrt {d-e x^2} \sqrt {d+e x^2} \left (\frac {2}{3} d \left (5 d \int \frac {1}{\sqrt {d-e x^2} \sqrt {e x^2+d}}dx-3 \int \frac {\sqrt {e x^2+d}}{\sqrt {d-e x^2}}dx\right )-\frac {1}{3} x \sqrt {d-e x^2} \sqrt {d+e x^2}\right )}{\sqrt {d^2-e^2 x^4}}\)

\(\Big \downarrow \) 289

\(\displaystyle \frac {\sqrt {d-e x^2} \sqrt {d+e x^2} \left (\frac {2}{3} d \left (\frac {5 d \sqrt {d^2-e^2 x^4} \int \frac {1}{\sqrt {d^2-e^2 x^4}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}-3 \int \frac {\sqrt {e x^2+d}}{\sqrt {d-e x^2}}dx\right )-\frac {1}{3} x \sqrt {d-e x^2} \sqrt {d+e x^2}\right )}{\sqrt {d^2-e^2 x^4}}\)

\(\Big \downarrow \) 329

\(\displaystyle \frac {\sqrt {d-e x^2} \sqrt {d+e x^2} \left (\frac {2}{3} d \left (\frac {5 d \sqrt {d^2-e^2 x^4} \int \frac {1}{\sqrt {d^2-e^2 x^4}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}-\frac {3 d \sqrt {1-\frac {e^2 x^4}{d^2}} \int \frac {\sqrt {\frac {e x^2}{d}+1}}{\sqrt {1-\frac {e x^2}{d}}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\right )-\frac {1}{3} x \sqrt {d-e x^2} \sqrt {d+e x^2}\right )}{\sqrt {d^2-e^2 x^4}}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {d-e x^2} \sqrt {d+e x^2} \left (\frac {2}{3} d \left (\frac {5 d \sqrt {d^2-e^2 x^4} \int \frac {1}{\sqrt {d^2-e^2 x^4}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}-\frac {3 d^{3/2} \sqrt {1-\frac {e^2 x^4}{d^2}} E\left (\left .\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right |-1\right )}{\sqrt {e} \sqrt {d-e x^2} \sqrt {d+e x^2}}\right )-\frac {1}{3} x \sqrt {d-e x^2} \sqrt {d+e x^2}\right )}{\sqrt {d^2-e^2 x^4}}\)

\(\Big \downarrow \) 765

\(\displaystyle \frac {\sqrt {d-e x^2} \sqrt {d+e x^2} \left (\frac {2}{3} d \left (\frac {5 d \sqrt {1-\frac {e^2 x^4}{d^2}} \int \frac {1}{\sqrt {1-\frac {e^2 x^4}{d^2}}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}-\frac {3 d^{3/2} \sqrt {1-\frac {e^2 x^4}{d^2}} E\left (\left .\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right |-1\right )}{\sqrt {e} \sqrt {d-e x^2} \sqrt {d+e x^2}}\right )-\frac {1}{3} x \sqrt {d-e x^2} \sqrt {d+e x^2}\right )}{\sqrt {d^2-e^2 x^4}}\)

\(\Big \downarrow \) 762

\(\displaystyle \frac {\sqrt {d-e x^2} \sqrt {d+e x^2} \left (\frac {2}{3} d \left (\frac {5 d^{3/2} \sqrt {1-\frac {e^2 x^4}{d^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ),-1\right )}{\sqrt {e} \sqrt {d-e x^2} \sqrt {d+e x^2}}-\frac {3 d^{3/2} \sqrt {1-\frac {e^2 x^4}{d^2}} E\left (\left .\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right |-1\right )}{\sqrt {e} \sqrt {d-e x^2} \sqrt {d+e x^2}}\right )-\frac {1}{3} x \sqrt {d-e x^2} \sqrt {d+e x^2}\right )}{\sqrt {d^2-e^2 x^4}}\)

Input:

Int[(d - e*x^2)^2/Sqrt[d^2 - e^2*x^4],x]
 

Output:

(Sqrt[d - e*x^2]*Sqrt[d + e*x^2]*(-1/3*(x*Sqrt[d - e*x^2]*Sqrt[d + e*x^2]) 
 + (2*d*((-3*d^(3/2)*Sqrt[1 - (e^2*x^4)/d^2]*EllipticE[ArcSin[(Sqrt[e]*x)/ 
Sqrt[d]], -1])/(Sqrt[e]*Sqrt[d - e*x^2]*Sqrt[d + e*x^2]) + (5*d^(3/2)*Sqrt 
[1 - (e^2*x^4)/d^2]*EllipticF[ArcSin[(Sqrt[e]*x)/Sqrt[d]], -1])/(Sqrt[e]*S 
qrt[d - e*x^2]*Sqrt[d + e*x^2])))/3))/Sqrt[d^2 - e^2*x^4]
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 289
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Sim 
p[(a + b*x^2)^FracPart[p]*((c + d*x^2)^FracPart[p]/(a*c + b*d*x^4)^FracPart 
[p])   Int[(a*c + b*d*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[b* 
c + a*d, 0] &&  !IntegerQ[p]
 

rule 318
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[d*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(b*(2*(p + q) + 1))), x] + S 
imp[1/(b*(2*(p + q) + 1))   Int[(a + b*x^2)^p*(c + d*x^2)^(q - 2)*Simp[c*(b 
*c*(2*(p + q) + 1) - a*d) + d*(b*c*(2*(p + 2*q - 1) + 1) - a*d*(2*(q - 1) + 
 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b*c - a*d, 0] && G 
tQ[q, 1] && NeQ[2*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntBinomialQ[a, b, c, 
d, 2, p, q, x]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 329
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
a*(Sqrt[1 - b^2*(x^4/a^2)]/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]))   Int[Sqrt[1 
+ b*(x^2/a)]/Sqrt[1 - b*(x^2/a)], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b 
*c + a*d, 0] &&  !(LtQ[a*c, 0] && GtQ[a*b, 0])
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 765
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[Sqrt[1 + b*(x^4/a)]/Sqrt 
[a + b*x^4]   Int[1/Sqrt[1 + b*(x^4/a)], x], x] /; FreeQ[{a, b}, x] && NegQ 
[b/a] &&  !GtQ[a, 0]
 

rule 1396
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x 
_Symbol] :> Simp[(a + c*x^(2*n))^FracPart[p]/((d + e*x^n)^FracPart[p]*(a/d 
+ c*(x^n/e))^FracPart[p])   Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, 
x], x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a* 
e^2, 0] &&  !IntegerQ[p] &&  !(EqQ[q, 1] && EqQ[n, 2])
 
Maple [A] (verified)

Time = 5.69 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.11

method result size
risch \(-\frac {x \sqrt {-e^{2} x^{4}+d^{2}}}{3}+\frac {2 d \left (\frac {2 d \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )}{\sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}+\frac {3 d \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {e}{d}}, i\right )\right )}{\sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}\right )}{3}\) \(160\)
elliptic \(-\frac {x \sqrt {-e^{2} x^{4}+d^{2}}}{3}+\frac {4 d^{2} \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )}{3 \sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}+\frac {2 d^{2} \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {e}{d}}, i\right )\right )}{\sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}\) \(160\)
default \(\frac {d^{2} \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )}{\sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}+e^{2} \left (-\frac {x \sqrt {-e^{2} x^{4}+d^{2}}}{3 e^{2}}+\frac {d^{2} \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )}{3 e^{2} \sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}\right )+\frac {2 d^{2} \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {e}{d}}, i\right )\right )}{\sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}\) \(233\)

Input:

int((-e*x^2+d)^2/(-e^2*x^4+d^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/3*x*(-e^2*x^4+d^2)^(1/2)+2/3*d*(2*d/(e/d)^(1/2)*(1-e*x^2/d)^(1/2)*(1+e* 
x^2/d)^(1/2)/(-e^2*x^4+d^2)^(1/2)*EllipticF(x*(e/d)^(1/2),I)+3*d/(e/d)^(1/ 
2)*(1-e*x^2/d)^(1/2)*(1+e*x^2/d)^(1/2)/(-e^2*x^4+d^2)^(1/2)*(EllipticF(x*( 
e/d)^(1/2),I)-EllipticE(x*(e/d)^(1/2),I)))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.78 \[ \int \frac {\left (d-e x^2\right )^2}{\sqrt {d^2-e^2 x^4}} \, dx=\frac {6 \, \sqrt {-e^{2}} d^{2} x \sqrt {\frac {d}{e}} E(\arcsin \left (\frac {\sqrt {\frac {d}{e}}}{x}\right )\,|\,-1) - 2 \, {\left (3 \, d^{2} - 2 \, d e\right )} \sqrt {-e^{2}} x \sqrt {\frac {d}{e}} F(\arcsin \left (\frac {\sqrt {\frac {d}{e}}}{x}\right )\,|\,-1) - \sqrt {-e^{2} x^{4} + d^{2}} {\left (e^{2} x^{2} - 6 \, d e\right )}}{3 \, e^{2} x} \] Input:

integrate((-e*x^2+d)^2/(-e^2*x^4+d^2)^(1/2),x, algorithm="fricas")
 

Output:

1/3*(6*sqrt(-e^2)*d^2*x*sqrt(d/e)*elliptic_e(arcsin(sqrt(d/e)/x), -1) - 2* 
(3*d^2 - 2*d*e)*sqrt(-e^2)*x*sqrt(d/e)*elliptic_f(arcsin(sqrt(d/e)/x), -1) 
 - sqrt(-e^2*x^4 + d^2)*(e^2*x^2 - 6*d*e))/(e^2*x)
 

Sympy [A] (verification not implemented)

Time = 1.48 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.85 \[ \int \frac {\left (d-e x^2\right )^2}{\sqrt {d^2-e^2 x^4}} \, dx=\frac {d x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {e^{2} x^{4} e^{2 i \pi }}{d^{2}}} \right )}}{4 \Gamma \left (\frac {5}{4}\right )} - \frac {e x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {e^{2} x^{4} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac {7}{4}\right )} + \frac {e^{2} x^{5} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {5}{4} \\ \frac {9}{4} \end {matrix}\middle | {\frac {e^{2} x^{4} e^{2 i \pi }}{d^{2}}} \right )}}{4 d \Gamma \left (\frac {9}{4}\right )} \] Input:

integrate((-e*x**2+d)**2/(-e**2*x**4+d**2)**(1/2),x)
 

Output:

d*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), e**2*x**4*exp_polar(2*I*pi)/d**2) 
/(4*gamma(5/4)) - e*x**3*gamma(3/4)*hyper((1/2, 3/4), (7/4,), e**2*x**4*ex 
p_polar(2*I*pi)/d**2)/(2*gamma(7/4)) + e**2*x**5*gamma(5/4)*hyper((1/2, 5/ 
4), (9/4,), e**2*x**4*exp_polar(2*I*pi)/d**2)/(4*d*gamma(9/4))
 

Maxima [F]

\[ \int \frac {\left (d-e x^2\right )^2}{\sqrt {d^2-e^2 x^4}} \, dx=\int { \frac {{\left (e x^{2} - d\right )}^{2}}{\sqrt {-e^{2} x^{4} + d^{2}}} \,d x } \] Input:

integrate((-e*x^2+d)^2/(-e^2*x^4+d^2)^(1/2),x, algorithm="maxima")
 

Output:

integrate((e*x^2 - d)^2/sqrt(-e^2*x^4 + d^2), x)
 

Giac [F]

\[ \int \frac {\left (d-e x^2\right )^2}{\sqrt {d^2-e^2 x^4}} \, dx=\int { \frac {{\left (e x^{2} - d\right )}^{2}}{\sqrt {-e^{2} x^{4} + d^{2}}} \,d x } \] Input:

integrate((-e*x^2+d)^2/(-e^2*x^4+d^2)^(1/2),x, algorithm="giac")
 

Output:

integrate((e*x^2 - d)^2/sqrt(-e^2*x^4 + d^2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d-e x^2\right )^2}{\sqrt {d^2-e^2 x^4}} \, dx=\int \frac {{\left (d-e\,x^2\right )}^2}{\sqrt {d^2-e^2\,x^4}} \,d x \] Input:

int((d - e*x^2)^2/(d^2 - e^2*x^4)^(1/2),x)
 

Output:

int((d - e*x^2)^2/(d^2 - e^2*x^4)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\left (d-e x^2\right )^2}{\sqrt {d^2-e^2 x^4}} \, dx=\left (\int \frac {\sqrt {-e^{2} x^{4}+d^{2}}}{e \,x^{2}+d}d x \right ) d -\left (\int \frac {\sqrt {-e^{2} x^{4}+d^{2}}\, x^{2}}{e \,x^{2}+d}d x \right ) e \] Input:

int((-e*x^2+d)^2/(-e^2*x^4+d^2)^(1/2),x)
 

Output:

int(sqrt(d**2 - e**2*x**4)/(d + e*x**2),x)*d - int((sqrt(d**2 - e**2*x**4) 
*x**2)/(d + e*x**2),x)*e