\(\int \frac {(d^2-e^2 x^4)^{3/2}}{(d+e x^2)^{9/2}} \, dx\) [144]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 125 \[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d+e x^2\right )^{9/2}} \, dx=\frac {x \sqrt {d^2-e^2 x^4}}{2 \left (d+e x^2\right )^{5/2}}+\frac {x \sqrt {d^2-e^2 x^4}}{8 d \left (d+e x^2\right )^{3/2}}+\frac {3 \arctan \left (\frac {\sqrt {2} \sqrt {e} x \sqrt {d+e x^2}}{\sqrt {d^2-e^2 x^4}}\right )}{8 \sqrt {2} d \sqrt {e}} \] Output:

1/2*x*(-e^2*x^4+d^2)^(1/2)/(e*x^2+d)^(5/2)+1/8*x*(-e^2*x^4+d^2)^(1/2)/d/(e 
*x^2+d)^(3/2)+3/16*arctan(2^(1/2)*e^(1/2)*x*(e*x^2+d)^(1/2)/(-e^2*x^4+d^2) 
^(1/2))*2^(1/2)/d/e^(1/2)
 

Mathematica [A] (verified)

Time = 5.01 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.98 \[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d+e x^2\right )^{9/2}} \, dx=\frac {\sqrt {d^2-e^2 x^4} \left (2 \sqrt {e} x \sqrt {d-e x^2} \left (5 d+e x^2\right )+3 \sqrt {2} \left (d+e x^2\right )^2 \arctan \left (\frac {\sqrt {2} \sqrt {e} x}{\sqrt {d-e x^2}}\right )\right )}{16 d \sqrt {e} \sqrt {d-e x^2} \left (d+e x^2\right )^{5/2}} \] Input:

Integrate[(d^2 - e^2*x^4)^(3/2)/(d + e*x^2)^(9/2),x]
 

Output:

(Sqrt[d^2 - e^2*x^4]*(2*Sqrt[e]*x*Sqrt[d - e*x^2]*(5*d + e*x^2) + 3*Sqrt[2 
]*(d + e*x^2)^2*ArcTan[(Sqrt[2]*Sqrt[e]*x)/Sqrt[d - e*x^2]]))/(16*d*Sqrt[e 
]*Sqrt[d - e*x^2]*(d + e*x^2)^(5/2))
 

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.17, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {1396, 292, 292, 291, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d+e x^2\right )^{9/2}} \, dx\)

\(\Big \downarrow \) 1396

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \int \frac {\left (d-e x^2\right )^{3/2}}{\left (e x^2+d\right )^3}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 292

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {3}{4} \int \frac {\sqrt {d-e x^2}}{\left (e x^2+d\right )^2}dx+\frac {x \left (d-e x^2\right )^{3/2}}{4 d \left (d+e x^2\right )^2}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 292

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {3}{4} \left (\frac {1}{2} \int \frac {1}{\sqrt {d-e x^2} \left (e x^2+d\right )}dx+\frac {x \sqrt {d-e x^2}}{2 d \left (d+e x^2\right )}\right )+\frac {x \left (d-e x^2\right )^{3/2}}{4 d \left (d+e x^2\right )^2}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {3}{4} \left (\frac {1}{2} \int \frac {1}{\frac {2 d e x^2}{d-e x^2}+d}d\frac {x}{\sqrt {d-e x^2}}+\frac {x \sqrt {d-e x^2}}{2 d \left (d+e x^2\right )}\right )+\frac {x \left (d-e x^2\right )^{3/2}}{4 d \left (d+e x^2\right )^2}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {3}{4} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e} x}{\sqrt {d-e x^2}}\right )}{2 \sqrt {2} d \sqrt {e}}+\frac {x \sqrt {d-e x^2}}{2 d \left (d+e x^2\right )}\right )+\frac {x \left (d-e x^2\right )^{3/2}}{4 d \left (d+e x^2\right )^2}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

Input:

Int[(d^2 - e^2*x^4)^(3/2)/(d + e*x^2)^(9/2),x]
 

Output:

(Sqrt[d^2 - e^2*x^4]*((x*(d - e*x^2)^(3/2))/(4*d*(d + e*x^2)^2) + (3*((x*S 
qrt[d - e*x^2])/(2*d*(d + e*x^2)) + ArcTan[(Sqrt[2]*Sqrt[e]*x)/Sqrt[d - e* 
x^2]]/(2*Sqrt[2]*d*Sqrt[e])))/4))/(Sqrt[d - e*x^2]*Sqrt[d + e*x^2])
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 292
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] :> Si 
mp[(-x)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2*a*(p + 1))), x] - Simp[c*(q/( 
a*(p + 1)))   Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 1), x], x] /; FreeQ[ 
{a, b, c, d, p}, x] && NeQ[b*c - a*d, 0] && EqQ[2*(p + q + 1) + 1, 0] && Gt 
Q[q, 0] && NeQ[p, -1]
 

rule 1396
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x 
_Symbol] :> Simp[(a + c*x^(2*n))^FracPart[p]/((d + e*x^n)^FracPart[p]*(a/d 
+ c*(x^n/e))^FracPart[p])   Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, 
x], x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a* 
e^2, 0] &&  !IntegerQ[p] &&  !(EqQ[q, 1] && EqQ[n, 2])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(451\) vs. \(2(99)=198\).

Time = 0.47 (sec) , antiderivative size = 452, normalized size of antiderivative = 3.62

method result size
default \(\frac {\sqrt {-e^{2} x^{4}+d^{2}}\, e^{2} \left (3 \ln \left (\frac {2 e \left (\sqrt {2}\, \sqrt {d}\, \sqrt {-e \,x^{2}+d}+\sqrt {-d e}\, x +d \right )}{e x +\sqrt {-d e}}\right ) \sqrt {2}\, e^{2} x^{4} \sqrt {d}-3 \ln \left (\frac {2 e \left (\sqrt {2}\, \sqrt {d}\, \sqrt {-e \,x^{2}+d}-\sqrt {-d e}\, x +d \right )}{e x -\sqrt {-d e}}\right ) \sqrt {2}\, e^{2} x^{4} \sqrt {d}+6 \ln \left (\frac {2 e \left (\sqrt {2}\, \sqrt {d}\, \sqrt {-e \,x^{2}+d}+\sqrt {-d e}\, x +d \right )}{e x +\sqrt {-d e}}\right ) \sqrt {2}\, d^{\frac {3}{2}} e \,x^{2}-6 \ln \left (\frac {2 e \left (\sqrt {2}\, \sqrt {d}\, \sqrt {-e \,x^{2}+d}-\sqrt {-d e}\, x +d \right )}{e x -\sqrt {-d e}}\right ) \sqrt {2}\, d^{\frac {3}{2}} e \,x^{2}+4 \sqrt {-d e}\, \sqrt {-e \,x^{2}+d}\, e \,x^{3}+3 \ln \left (\frac {2 e \left (\sqrt {2}\, \sqrt {d}\, \sqrt {-e \,x^{2}+d}+\sqrt {-d e}\, x +d \right )}{e x +\sqrt {-d e}}\right ) \sqrt {2}\, d^{\frac {5}{2}}-3 \ln \left (\frac {2 e \left (\sqrt {2}\, \sqrt {d}\, \sqrt {-e \,x^{2}+d}-\sqrt {-d e}\, x +d \right )}{e x -\sqrt {-d e}}\right ) \sqrt {2}\, d^{\frac {5}{2}}+20 d \sqrt {-d e}\, \sqrt {-e \,x^{2}+d}\, x \right )}{32 d \sqrt {e \,x^{2}+d}\, \sqrt {-e \,x^{2}+d}\, \left (e x -\sqrt {-d e}\right )^{2} \left (e x +\sqrt {-d e}\right )^{2} \sqrt {-d e}}\) \(452\)

Input:

int((-e^2*x^4+d^2)^(3/2)/(e*x^2+d)^(9/2),x,method=_RETURNVERBOSE)
 

Output:

1/32*(-e^2*x^4+d^2)^(1/2)*e^2/d*(3*ln(2*e*(2^(1/2)*d^(1/2)*(-e*x^2+d)^(1/2 
)+(-d*e)^(1/2)*x+d)/(e*x+(-d*e)^(1/2)))*2^(1/2)*e^2*x^4*d^(1/2)-3*ln(2*e*( 
2^(1/2)*d^(1/2)*(-e*x^2+d)^(1/2)-(-d*e)^(1/2)*x+d)/(e*x-(-d*e)^(1/2)))*2^( 
1/2)*e^2*x^4*d^(1/2)+6*ln(2*e*(2^(1/2)*d^(1/2)*(-e*x^2+d)^(1/2)+(-d*e)^(1/ 
2)*x+d)/(e*x+(-d*e)^(1/2)))*2^(1/2)*d^(3/2)*e*x^2-6*ln(2*e*(2^(1/2)*d^(1/2 
)*(-e*x^2+d)^(1/2)-(-d*e)^(1/2)*x+d)/(e*x-(-d*e)^(1/2)))*2^(1/2)*d^(3/2)*e 
*x^2+4*(-d*e)^(1/2)*(-e*x^2+d)^(1/2)*e*x^3+3*ln(2*e*(2^(1/2)*d^(1/2)*(-e*x 
^2+d)^(1/2)+(-d*e)^(1/2)*x+d)/(e*x+(-d*e)^(1/2)))*2^(1/2)*d^(5/2)-3*ln(2*e 
*(2^(1/2)*d^(1/2)*(-e*x^2+d)^(1/2)-(-d*e)^(1/2)*x+d)/(e*x-(-d*e)^(1/2)))*2 
^(1/2)*d^(5/2)+20*d*(-d*e)^(1/2)*(-e*x^2+d)^(1/2)*x)/(e*x^2+d)^(1/2)/(-e*x 
^2+d)^(1/2)/(e*x-(-d*e)^(1/2))^2/(e*x+(-d*e)^(1/2))^2/(-d*e)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 360, normalized size of antiderivative = 2.88 \[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d+e x^2\right )^{9/2}} \, dx=\left [-\frac {3 \, \sqrt {2} {\left (e^{3} x^{6} + 3 \, d e^{2} x^{4} + 3 \, d^{2} e x^{2} + d^{3}\right )} \sqrt {-e} \log \left (-\frac {3 \, e^{2} x^{4} + 2 \, d e x^{2} - 2 \, \sqrt {2} \sqrt {-e^{2} x^{4} + d^{2}} \sqrt {e x^{2} + d} \sqrt {-e} x - d^{2}}{e^{2} x^{4} + 2 \, d e x^{2} + d^{2}}\right ) - 4 \, \sqrt {-e^{2} x^{4} + d^{2}} {\left (e^{2} x^{3} + 5 \, d e x\right )} \sqrt {e x^{2} + d}}{32 \, {\left (d e^{4} x^{6} + 3 \, d^{2} e^{3} x^{4} + 3 \, d^{3} e^{2} x^{2} + d^{4} e\right )}}, -\frac {3 \, \sqrt {2} {\left (e^{3} x^{6} + 3 \, d e^{2} x^{4} + 3 \, d^{2} e x^{2} + d^{3}\right )} \sqrt {e} \arctan \left (\frac {\sqrt {2} \sqrt {-e^{2} x^{4} + d^{2}} \sqrt {e x^{2} + d} \sqrt {e} x}{e^{2} x^{4} - d^{2}}\right ) - 2 \, \sqrt {-e^{2} x^{4} + d^{2}} {\left (e^{2} x^{3} + 5 \, d e x\right )} \sqrt {e x^{2} + d}}{16 \, {\left (d e^{4} x^{6} + 3 \, d^{2} e^{3} x^{4} + 3 \, d^{3} e^{2} x^{2} + d^{4} e\right )}}\right ] \] Input:

integrate((-e^2*x^4+d^2)^(3/2)/(e*x^2+d)^(9/2),x, algorithm="fricas")
 

Output:

[-1/32*(3*sqrt(2)*(e^3*x^6 + 3*d*e^2*x^4 + 3*d^2*e*x^2 + d^3)*sqrt(-e)*log 
(-(3*e^2*x^4 + 2*d*e*x^2 - 2*sqrt(2)*sqrt(-e^2*x^4 + d^2)*sqrt(e*x^2 + d)* 
sqrt(-e)*x - d^2)/(e^2*x^4 + 2*d*e*x^2 + d^2)) - 4*sqrt(-e^2*x^4 + d^2)*(e 
^2*x^3 + 5*d*e*x)*sqrt(e*x^2 + d))/(d*e^4*x^6 + 3*d^2*e^3*x^4 + 3*d^3*e^2* 
x^2 + d^4*e), -1/16*(3*sqrt(2)*(e^3*x^6 + 3*d*e^2*x^4 + 3*d^2*e*x^2 + d^3) 
*sqrt(e)*arctan(sqrt(2)*sqrt(-e^2*x^4 + d^2)*sqrt(e*x^2 + d)*sqrt(e)*x/(e^ 
2*x^4 - d^2)) - 2*sqrt(-e^2*x^4 + d^2)*(e^2*x^3 + 5*d*e*x)*sqrt(e*x^2 + d) 
)/(d*e^4*x^6 + 3*d^2*e^3*x^4 + 3*d^3*e^2*x^2 + d^4*e)]
 

Sympy [F]

\[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d+e x^2\right )^{9/2}} \, dx=\int \frac {\left (- \left (- d + e x^{2}\right ) \left (d + e x^{2}\right )\right )^{\frac {3}{2}}}{\left (d + e x^{2}\right )^{\frac {9}{2}}}\, dx \] Input:

integrate((-e**2*x**4+d**2)**(3/2)/(e*x**2+d)**(9/2),x)
 

Output:

Integral((-(-d + e*x**2)*(d + e*x**2))**(3/2)/(d + e*x**2)**(9/2), x)
 

Maxima [F]

\[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d+e x^2\right )^{9/2}} \, dx=\int { \frac {{\left (-e^{2} x^{4} + d^{2}\right )}^{\frac {3}{2}}}{{\left (e x^{2} + d\right )}^{\frac {9}{2}}} \,d x } \] Input:

integrate((-e^2*x^4+d^2)^(3/2)/(e*x^2+d)^(9/2),x, algorithm="maxima")
 

Output:

integrate((-e^2*x^4 + d^2)^(3/2)/(e*x^2 + d)^(9/2), x)
 

Giac [F]

\[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d+e x^2\right )^{9/2}} \, dx=\int { \frac {{\left (-e^{2} x^{4} + d^{2}\right )}^{\frac {3}{2}}}{{\left (e x^{2} + d\right )}^{\frac {9}{2}}} \,d x } \] Input:

integrate((-e^2*x^4+d^2)^(3/2)/(e*x^2+d)^(9/2),x, algorithm="giac")
 

Output:

integrate((-e^2*x^4 + d^2)^(3/2)/(e*x^2 + d)^(9/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d+e x^2\right )^{9/2}} \, dx=\int \frac {{\left (d^2-e^2\,x^4\right )}^{3/2}}{{\left (e\,x^2+d\right )}^{9/2}} \,d x \] Input:

int((d^2 - e^2*x^4)^(3/2)/(d + e*x^2)^(9/2),x)
 

Output:

int((d^2 - e^2*x^4)^(3/2)/(d + e*x^2)^(9/2), x)
 

Reduce [F]

\[ \int \frac {\left (d^2-e^2 x^4\right )^{3/2}}{\left (d+e x^2\right )^{9/2}} \, dx=\frac {5 \sqrt {e \,x^{2}+d}\, \sqrt {-e^{2} x^{4}+d^{2}}\, d x +\sqrt {e \,x^{2}+d}\, \sqrt {-e^{2} x^{4}+d^{2}}\, e \,x^{3}+12 \left (\int \frac {\sqrt {e \,x^{2}+d}\, \sqrt {-e^{2} x^{4}+d^{2}}\, x^{2}}{-e^{5} x^{10}-3 d \,e^{4} x^{8}-2 d^{2} e^{3} x^{6}+2 d^{3} e^{2} x^{4}+3 d^{4} e \,x^{2}+d^{5}}d x \right ) d^{5} e +36 \left (\int \frac {\sqrt {e \,x^{2}+d}\, \sqrt {-e^{2} x^{4}+d^{2}}\, x^{2}}{-e^{5} x^{10}-3 d \,e^{4} x^{8}-2 d^{2} e^{3} x^{6}+2 d^{3} e^{2} x^{4}+3 d^{4} e \,x^{2}+d^{5}}d x \right ) d^{4} e^{2} x^{2}+36 \left (\int \frac {\sqrt {e \,x^{2}+d}\, \sqrt {-e^{2} x^{4}+d^{2}}\, x^{2}}{-e^{5} x^{10}-3 d \,e^{4} x^{8}-2 d^{2} e^{3} x^{6}+2 d^{3} e^{2} x^{4}+3 d^{4} e \,x^{2}+d^{5}}d x \right ) d^{3} e^{3} x^{4}+12 \left (\int \frac {\sqrt {e \,x^{2}+d}\, \sqrt {-e^{2} x^{4}+d^{2}}\, x^{2}}{-e^{5} x^{10}-3 d \,e^{4} x^{8}-2 d^{2} e^{3} x^{6}+2 d^{3} e^{2} x^{4}+3 d^{4} e \,x^{2}+d^{5}}d x \right ) d^{2} e^{4} x^{6}}{5 d \left (e^{3} x^{6}+3 d \,e^{2} x^{4}+3 d^{2} e \,x^{2}+d^{3}\right )} \] Input:

int((-e^2*x^4+d^2)^(3/2)/(e*x^2+d)^(9/2),x)
 

Output:

(5*sqrt(d + e*x**2)*sqrt(d**2 - e**2*x**4)*d*x + sqrt(d + e*x**2)*sqrt(d** 
2 - e**2*x**4)*e*x**3 + 12*int((sqrt(d + e*x**2)*sqrt(d**2 - e**2*x**4)*x* 
*2)/(d**5 + 3*d**4*e*x**2 + 2*d**3*e**2*x**4 - 2*d**2*e**3*x**6 - 3*d*e**4 
*x**8 - e**5*x**10),x)*d**5*e + 36*int((sqrt(d + e*x**2)*sqrt(d**2 - e**2* 
x**4)*x**2)/(d**5 + 3*d**4*e*x**2 + 2*d**3*e**2*x**4 - 2*d**2*e**3*x**6 - 
3*d*e**4*x**8 - e**5*x**10),x)*d**4*e**2*x**2 + 36*int((sqrt(d + e*x**2)*s 
qrt(d**2 - e**2*x**4)*x**2)/(d**5 + 3*d**4*e*x**2 + 2*d**3*e**2*x**4 - 2*d 
**2*e**3*x**6 - 3*d*e**4*x**8 - e**5*x**10),x)*d**3*e**3*x**4 + 12*int((sq 
rt(d + e*x**2)*sqrt(d**2 - e**2*x**4)*x**2)/(d**5 + 3*d**4*e*x**2 + 2*d**3 
*e**2*x**4 - 2*d**2*e**3*x**6 - 3*d*e**4*x**8 - e**5*x**10),x)*d**2*e**4*x 
**6)/(5*d*(d**3 + 3*d**2*e*x**2 + 3*d*e**2*x**4 + e**3*x**6))