\(\int \frac {c+d x^2}{a+b x^4} \, dx\) [201]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 180 \[ \int \frac {c+d x^2}{a+b x^4} \, dx=-\frac {\left (\sqrt {b} c+\sqrt {a} d\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c+\sqrt {a} d\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c-\sqrt {a} d\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x}{\sqrt {a}+\sqrt {b} x^2}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}} \] Output:

1/4*(b^(1/2)*c+a^(1/2)*d)*arctan(-1+2^(1/2)*b^(1/4)*x/a^(1/4))*2^(1/2)/a^( 
3/4)/b^(3/4)+1/4*(b^(1/2)*c+a^(1/2)*d)*arctan(1+2^(1/2)*b^(1/4)*x/a^(1/4)) 
*2^(1/2)/a^(3/4)/b^(3/4)+1/4*(b^(1/2)*c-a^(1/2)*d)*arctanh(2^(1/2)*a^(1/4) 
*b^(1/4)*x/(a^(1/2)+b^(1/2)*x^2))*2^(1/2)/a^(3/4)/b^(3/4)
 

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.02 \[ \int \frac {c+d x^2}{a+b x^4} \, dx=\frac {-2 \left (\sqrt {b} c+\sqrt {a} d\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )+2 \left (\sqrt {b} c+\sqrt {a} d\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )-\left (\sqrt {b} c-\sqrt {a} d\right ) \left (\log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )-\log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )\right )}{4 \sqrt {2} a^{3/4} b^{3/4}} \] Input:

Integrate[(c + d*x^2)/(a + b*x^4),x]
 

Output:

(-2*(Sqrt[b]*c + Sqrt[a]*d)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)] + 2*(S 
qrt[b]*c + Sqrt[a]*d)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)] - (Sqrt[b]*c 
 - Sqrt[a]*d)*(Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2] - Lo 
g[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2]))/(4*Sqrt[2]*a^(3/4)* 
b^(3/4))
 

Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.28, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.529, Rules used = {1482, 27, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d x^2}{a+b x^4} \, dx\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}-d\right ) \int \frac {\sqrt {b} \left (\sqrt {a}-\sqrt {b} x^2\right )}{b x^4+a}dx}{2 b}+\frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}+d\right ) \int \frac {\sqrt {b} \left (\sqrt {b} x^2+\sqrt {a}\right )}{b x^4+a}dx}{2 b}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}-d\right ) \int \frac {\sqrt {a}-\sqrt {b} x^2}{b x^4+a}dx}{2 \sqrt {b}}+\frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}+d\right ) \int \frac {\sqrt {b} x^2+\sqrt {a}}{b x^4+a}dx}{2 \sqrt {b}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}+d\right ) \left (\frac {\int \frac {1}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}dx}{2 \sqrt {b}}+\frac {\int \frac {1}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}dx}{2 \sqrt {b}}\right )}{2 \sqrt {b}}+\frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}-d\right ) \int \frac {\sqrt {a}-\sqrt {b} x^2}{b x^4+a}dx}{2 \sqrt {b}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}-d\right ) \int \frac {\sqrt {a}-\sqrt {b} x^2}{b x^4+a}dx}{2 \sqrt {b}}+\frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}+d\right ) \left (\frac {\int \frac {1}{-\left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )^2-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-\left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )^2-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}\right )}{2 \sqrt {b}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}-d\right ) \int \frac {\sqrt {a}-\sqrt {b} x^2}{b x^4+a}dx}{2 \sqrt {b}}+\frac {\left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}\right ) \left (\frac {\sqrt {b} c}{\sqrt {a}}+d\right )}{2 \sqrt {b}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}-d\right ) \left (-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} x}{\sqrt [4]{b} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} x+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}\right )}{2 \sqrt {b}}+\frac {\left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}\right ) \left (\frac {\sqrt {b} c}{\sqrt {a}}+d\right )}{2 \sqrt {b}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}-d\right ) \left (\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} x}{\sqrt [4]{b} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} x+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}\right )}{2 \sqrt {b}}+\frac {\left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}\right ) \left (\frac {\sqrt {b} c}{\sqrt {a}}+d\right )}{2 \sqrt {b}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}-d\right ) \left (\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} x}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{b} x+\sqrt [4]{a}}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}dx}{2 \sqrt [4]{a} \sqrt {b}}\right )}{2 \sqrt {b}}+\frac {\left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}\right ) \left (\frac {\sqrt {b} c}{\sqrt {a}}+d\right )}{2 \sqrt {b}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}\right ) \left (\frac {\sqrt {b} c}{\sqrt {a}}+d\right )}{2 \sqrt {b}}+\frac {\left (\frac {\sqrt {b} c}{\sqrt {a}}-d\right ) \left (\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}\right )}{2 \sqrt {b}}\)

Input:

Int[(c + d*x^2)/(a + b*x^4),x]
 

Output:

(((Sqrt[b]*c)/Sqrt[a] + d)*(-(ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)]/(Sqr 
t[2]*a^(1/4)*b^(1/4))) + ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)]/(Sqrt[2]* 
a^(1/4)*b^(1/4))))/(2*Sqrt[b]) + (((Sqrt[b]*c)/Sqrt[a] - d)*(-1/2*Log[Sqrt 
[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2]/(Sqrt[2]*a^(1/4)*b^(1/4)) + 
 Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2]/(2*Sqrt[2]*a^(1/4) 
*b^(1/4))))/(2*Sqrt[b])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.10 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.19

method result size
risch \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (\textit {\_R}^{2} d +c \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{4 b}\) \(34\)
default \(\frac {c \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}{x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 a}+\frac {d \sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}{x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(206\)

Input:

int((d*x^2+c)/(b*x^4+a),x,method=_RETURNVERBOSE)
 

Output:

1/4/b*sum((_R^2*d+c)/_R^3*ln(x-_R),_R=RootOf(_Z^4*b+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 767 vs. \(2 (121) = 242\).

Time = 0.08 (sec) , antiderivative size = 767, normalized size of antiderivative = 4.26 \[ \int \frac {c+d x^2}{a+b x^4} \, dx=-\frac {1}{4} \, \sqrt {-\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x + {\left (a^{3} b^{2} d \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + a b^{2} c^{3} - a^{2} b c d^{2}\right )} \sqrt {-\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}}\right ) + \frac {1}{4} \, \sqrt {-\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x - {\left (a^{3} b^{2} d \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + a b^{2} c^{3} - a^{2} b c d^{2}\right )} \sqrt {-\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} + 2 \, c d}{a b}}\right ) + \frac {1}{4} \, \sqrt {\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x + {\left (a^{3} b^{2} d \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - a b^{2} c^{3} + a^{2} b c d^{2}\right )} \sqrt {\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}}\right ) - \frac {1}{4} \, \sqrt {\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}} \log \left (-{\left (b^{2} c^{4} - a^{2} d^{4}\right )} x - {\left (a^{3} b^{2} d \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - a b^{2} c^{3} + a^{2} b c d^{2}\right )} \sqrt {\frac {a b \sqrt {-\frac {b^{2} c^{4} - 2 \, a b c^{2} d^{2} + a^{2} d^{4}}{a^{3} b^{3}}} - 2 \, c d}{a b}}\right ) \] Input:

integrate((d*x^2+c)/(b*x^4+a),x, algorithm="fricas")
 

Output:

-1/4*sqrt(-(a*b*sqrt(-(b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + 2*c 
*d)/(a*b))*log(-(b^2*c^4 - a^2*d^4)*x + (a^3*b^2*d*sqrt(-(b^2*c^4 - 2*a*b* 
c^2*d^2 + a^2*d^4)/(a^3*b^3)) + a*b^2*c^3 - a^2*b*c*d^2)*sqrt(-(a*b*sqrt(- 
(b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + 2*c*d)/(a*b))) + 1/4*sqrt 
(-(a*b*sqrt(-(b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + 2*c*d)/(a*b) 
)*log(-(b^2*c^4 - a^2*d^4)*x - (a^3*b^2*d*sqrt(-(b^2*c^4 - 2*a*b*c^2*d^2 + 
 a^2*d^4)/(a^3*b^3)) + a*b^2*c^3 - a^2*b*c*d^2)*sqrt(-(a*b*sqrt(-(b^2*c^4 
- 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) + 2*c*d)/(a*b))) + 1/4*sqrt((a*b*sqr 
t(-(b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - 2*c*d)/(a*b))*log(-(b^ 
2*c^4 - a^2*d^4)*x + (a^3*b^2*d*sqrt(-(b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/ 
(a^3*b^3)) - a*b^2*c^3 + a^2*b*c*d^2)*sqrt((a*b*sqrt(-(b^2*c^4 - 2*a*b*c^2 
*d^2 + a^2*d^4)/(a^3*b^3)) - 2*c*d)/(a*b))) - 1/4*sqrt((a*b*sqrt(-(b^2*c^4 
 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) - 2*c*d)/(a*b))*log(-(b^2*c^4 - a^2 
*d^4)*x - (a^3*b^2*d*sqrt(-(b^2*c^4 - 2*a*b*c^2*d^2 + a^2*d^4)/(a^3*b^3)) 
- a*b^2*c^3 + a^2*b*c*d^2)*sqrt((a*b*sqrt(-(b^2*c^4 - 2*a*b*c^2*d^2 + a^2* 
d^4)/(a^3*b^3)) - 2*c*d)/(a*b)))
 

Sympy [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.61 \[ \int \frac {c+d x^2}{a+b x^4} \, dx=\operatorname {RootSum} {\left (256 t^{4} a^{3} b^{3} + 64 t^{2} a^{2} b^{2} c d + a^{2} d^{4} + 2 a b c^{2} d^{2} + b^{2} c^{4}, \left ( t \mapsto t \log {\left (x + \frac {64 t^{3} a^{3} b^{2} d + 12 t a^{2} b c d^{2} - 4 t a b^{2} c^{3}}{a^{2} d^{4} - b^{2} c^{4}} \right )} \right )\right )} \] Input:

integrate((d*x**2+c)/(b*x**4+a),x)
 

Output:

RootSum(256*_t**4*a**3*b**3 + 64*_t**2*a**2*b**2*c*d + a**2*d**4 + 2*a*b*c 
**2*d**2 + b**2*c**4, Lambda(_t, _t*log(x + (64*_t**3*a**3*b**2*d + 12*_t* 
a**2*b*c*d**2 - 4*_t*a*b**2*c**3)/(a**2*d**4 - b**2*c**4))))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 221, normalized size of antiderivative = 1.23 \[ \int \frac {c+d x^2}{a+b x^4} \, dx=\frac {\sqrt {2} {\left (\sqrt {b} c + \sqrt {a} d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{4 \, \sqrt {a} \sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {\sqrt {2} {\left (\sqrt {b} c + \sqrt {a} d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{4 \, \sqrt {a} \sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {\sqrt {2} {\left (\sqrt {b} c - \sqrt {a} d\right )} \log \left (\sqrt {b} x^{2} + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} b^{\frac {3}{4}}} - \frac {\sqrt {2} {\left (\sqrt {b} c - \sqrt {a} d\right )} \log \left (\sqrt {b} x^{2} - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} b^{\frac {3}{4}}} \] Input:

integrate((d*x^2+c)/(b*x^4+a),x, algorithm="maxima")
 

Output:

1/4*sqrt(2)*(sqrt(b)*c + sqrt(a)*d)*arctan(1/2*sqrt(2)*(2*sqrt(b)*x + sqrt 
(2)*a^(1/4)*b^(1/4))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b)) 
*sqrt(b)) + 1/4*sqrt(2)*(sqrt(b)*c + sqrt(a)*d)*arctan(1/2*sqrt(2)*(2*sqrt 
(b)*x - sqrt(2)*a^(1/4)*b^(1/4))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt 
(a)*sqrt(b))*sqrt(b)) + 1/8*sqrt(2)*(sqrt(b)*c - sqrt(a)*d)*log(sqrt(b)*x^ 
2 + sqrt(2)*a^(1/4)*b^(1/4)*x + sqrt(a))/(a^(3/4)*b^(3/4)) - 1/8*sqrt(2)*( 
sqrt(b)*c - sqrt(a)*d)*log(sqrt(b)*x^2 - sqrt(2)*a^(1/4)*b^(1/4)*x + sqrt( 
a))/(a^(3/4)*b^(3/4))
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.34 \[ \int \frac {c+d x^2}{a+b x^4} \, dx=\frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c + \left (a b^{3}\right )^{\frac {3}{4}} d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, a b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c + \left (a b^{3}\right )^{\frac {3}{4}} d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, a b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac {3}{4}} d\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, a b^{3}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac {3}{4}} d\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, a b^{3}} \] Input:

integrate((d*x^2+c)/(b*x^4+a),x, algorithm="giac")
 

Output:

1/4*sqrt(2)*((a*b^3)^(1/4)*b^2*c + (a*b^3)^(3/4)*d)*arctan(1/2*sqrt(2)*(2* 
x + sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4))/(a*b^3) + 1/4*sqrt(2)*((a*b^3)^(1/4) 
*b^2*c + (a*b^3)^(3/4)*d)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/b)^(1/4))/( 
a/b)^(1/4))/(a*b^3) + 1/8*sqrt(2)*((a*b^3)^(1/4)*b^2*c - (a*b^3)^(3/4)*d)* 
log(x^2 + sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/(a*b^3) - 1/8*sqrt(2)*((a*b^3 
)^(1/4)*b^2*c - (a*b^3)^(3/4)*d)*log(x^2 - sqrt(2)*x*(a/b)^(1/4) + sqrt(a/ 
b))/(a*b^3)
 

Mupad [B] (verification not implemented)

Time = 17.22 (sec) , antiderivative size = 599, normalized size of antiderivative = 3.33 \[ \int \frac {c+d x^2}{a+b x^4} \, dx=-2\,\mathrm {atanh}\left (\frac {8\,b^3\,c^2\,x\,\sqrt {\frac {d^2\,\sqrt {-a^3\,b^3}}{16\,a^2\,b^3}-\frac {c^2\,\sqrt {-a^3\,b^3}}{16\,a^3\,b^2}-\frac {c\,d}{8\,a\,b}}}{2\,b^2\,c^2\,d-2\,a\,b\,d^3+\frac {2\,b\,c^3\,\sqrt {-a^3\,b^3}}{a^2}-\frac {2\,c\,d^2\,\sqrt {-a^3\,b^3}}{a}}-\frac {8\,a\,b^2\,d^2\,x\,\sqrt {\frac {d^2\,\sqrt {-a^3\,b^3}}{16\,a^2\,b^3}-\frac {c^2\,\sqrt {-a^3\,b^3}}{16\,a^3\,b^2}-\frac {c\,d}{8\,a\,b}}}{2\,b^2\,c^2\,d-2\,a\,b\,d^3+\frac {2\,b\,c^3\,\sqrt {-a^3\,b^3}}{a^2}-\frac {2\,c\,d^2\,\sqrt {-a^3\,b^3}}{a}}\right )\,\sqrt {-\frac {b\,c^2\,\sqrt {-a^3\,b^3}-a\,d^2\,\sqrt {-a^3\,b^3}+2\,a^2\,b^2\,c\,d}{16\,a^3\,b^3}}-2\,\mathrm {atanh}\left (\frac {8\,b^3\,c^2\,x\,\sqrt {\frac {c^2\,\sqrt {-a^3\,b^3}}{16\,a^3\,b^2}-\frac {c\,d}{8\,a\,b}-\frac {d^2\,\sqrt {-a^3\,b^3}}{16\,a^2\,b^3}}}{2\,b^2\,c^2\,d-2\,a\,b\,d^3-\frac {2\,b\,c^3\,\sqrt {-a^3\,b^3}}{a^2}+\frac {2\,c\,d^2\,\sqrt {-a^3\,b^3}}{a}}-\frac {8\,a\,b^2\,d^2\,x\,\sqrt {\frac {c^2\,\sqrt {-a^3\,b^3}}{16\,a^3\,b^2}-\frac {c\,d}{8\,a\,b}-\frac {d^2\,\sqrt {-a^3\,b^3}}{16\,a^2\,b^3}}}{2\,b^2\,c^2\,d-2\,a\,b\,d^3-\frac {2\,b\,c^3\,\sqrt {-a^3\,b^3}}{a^2}+\frac {2\,c\,d^2\,\sqrt {-a^3\,b^3}}{a}}\right )\,\sqrt {-\frac {a\,d^2\,\sqrt {-a^3\,b^3}-b\,c^2\,\sqrt {-a^3\,b^3}+2\,a^2\,b^2\,c\,d}{16\,a^3\,b^3}} \] Input:

int((c + d*x^2)/(a + b*x^4),x)
 

Output:

- 2*atanh((8*b^3*c^2*x*((d^2*(-a^3*b^3)^(1/2))/(16*a^2*b^3) - (c^2*(-a^3*b 
^3)^(1/2))/(16*a^3*b^2) - (c*d)/(8*a*b))^(1/2))/(2*b^2*c^2*d - 2*a*b*d^3 + 
 (2*b*c^3*(-a^3*b^3)^(1/2))/a^2 - (2*c*d^2*(-a^3*b^3)^(1/2))/a) - (8*a*b^2 
*d^2*x*((d^2*(-a^3*b^3)^(1/2))/(16*a^2*b^3) - (c^2*(-a^3*b^3)^(1/2))/(16*a 
^3*b^2) - (c*d)/(8*a*b))^(1/2))/(2*b^2*c^2*d - 2*a*b*d^3 + (2*b*c^3*(-a^3* 
b^3)^(1/2))/a^2 - (2*c*d^2*(-a^3*b^3)^(1/2))/a))*(-(b*c^2*(-a^3*b^3)^(1/2) 
 - a*d^2*(-a^3*b^3)^(1/2) + 2*a^2*b^2*c*d)/(16*a^3*b^3))^(1/2) - 2*atanh(( 
8*b^3*c^2*x*((c^2*(-a^3*b^3)^(1/2))/(16*a^3*b^2) - (c*d)/(8*a*b) - (d^2*(- 
a^3*b^3)^(1/2))/(16*a^2*b^3))^(1/2))/(2*b^2*c^2*d - 2*a*b*d^3 - (2*b*c^3*( 
-a^3*b^3)^(1/2))/a^2 + (2*c*d^2*(-a^3*b^3)^(1/2))/a) - (8*a*b^2*d^2*x*((c^ 
2*(-a^3*b^3)^(1/2))/(16*a^3*b^2) - (c*d)/(8*a*b) - (d^2*(-a^3*b^3)^(1/2))/ 
(16*a^2*b^3))^(1/2))/(2*b^2*c^2*d - 2*a*b*d^3 - (2*b*c^3*(-a^3*b^3)^(1/2)) 
/a^2 + (2*c*d^2*(-a^3*b^3)^(1/2))/a))*(-(a*d^2*(-a^3*b^3)^(1/2) - b*c^2*(- 
a^3*b^3)^(1/2) + 2*a^2*b^2*c*d)/(16*a^3*b^3))^(1/2)
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 239, normalized size of antiderivative = 1.33 \[ \int \frac {c+d x^2}{a+b x^4} \, dx=\frac {\sqrt {2}\, \left (-2 \sqrt {a}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) d -2 \sqrt {b}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) c +2 \sqrt {a}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) d +2 \sqrt {b}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) c +\sqrt {a}\, \mathrm {log}\left (-b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) d -\sqrt {a}\, \mathrm {log}\left (b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) d -\sqrt {b}\, \mathrm {log}\left (-b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) c +\sqrt {b}\, \mathrm {log}\left (b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) c \right )}{8 b^{\frac {3}{4}} a^{\frac {3}{4}}} \] Input:

int((d*x^2+c)/(b*x^4+a),x)
 

Output:

(b**(1/4)*a**(1/4)*sqrt(2)*( - 2*sqrt(a)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 
 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*d - 2*sqrt(b)*atan((b**(1/4)*a* 
*(1/4)*sqrt(2) - 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*c + 2*sqrt(a)*a 
tan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2))) 
*d + 2*sqrt(b)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(b)*x)/(b**(1/4)*a* 
*(1/4)*sqrt(2)))*c + sqrt(a)*log( - b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) 
+ sqrt(b)*x**2)*d - sqrt(a)*log(b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sq 
rt(b)*x**2)*d - sqrt(b)*log( - b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqr 
t(b)*x**2)*c + sqrt(b)*log(b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(b) 
*x**2)*c))/(8*a*b)