\(\int \frac {1+e^2 x^2}{\sqrt {1-e^4 x^4}} \, dx\) [4]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 10 \[ \int \frac {1+e^2 x^2}{\sqrt {1-e^4 x^4}} \, dx=\frac {E(\arcsin (e x)|-1)}{e} \] Output:

EllipticE(e*x,I)/e
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 47, normalized size of antiderivative = 4.70 \[ \int \frac {1+e^2 x^2}{\sqrt {1-e^4 x^4}} \, dx=x \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},e^4 x^4\right )+\frac {1}{3} e^2 x^3 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},e^4 x^4\right ) \] Input:

Integrate[(1 + e^2*x^2)/Sqrt[1 - e^4*x^4],x]
 

Output:

x*Hypergeometric2F1[1/4, 1/2, 5/4, e^4*x^4] + (e^2*x^3*Hypergeometric2F1[1 
/2, 3/4, 7/4, e^4*x^4])/3
 

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 10, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {1388, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {e^2 x^2+1}{\sqrt {1-e^4 x^4}} \, dx\)

\(\Big \downarrow \) 1388

\(\displaystyle \int \frac {\sqrt {e^2 x^2+1}}{\sqrt {1-e^2 x^2}}dx\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {E(\arcsin (e x)|-1)}{e}\)

Input:

Int[(1 + e^2*x^2)/Sqrt[1 - e^4*x^4],x]
 

Output:

EllipticE[ArcSin[e*x], -1]/e
 

Defintions of rubi rules used

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 1388
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), 
x_Symbol] :> Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, 
 c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && (Integer 
Q[p] || (GtQ[a, 0] && GtQ[d, 0]))
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 1.87 (sec) , antiderivative size = 38, normalized size of antiderivative = 3.80

method result size
meijerg \(\frac {e^{2} x^{3} \operatorname {hypergeom}\left (\left [\frac {1}{2}, \frac {3}{4}\right ], \left [\frac {7}{4}\right ], e^{4} x^{4}\right )}{3}+x \operatorname {hypergeom}\left (\left [\frac {1}{4}, \frac {1}{2}\right ], \left [\frac {5}{4}\right ], e^{4} x^{4}\right )\) \(38\)
default \(\frac {\sqrt {-e^{2} x^{2}+1}\, \sqrt {e^{2} x^{2}+1}\, \operatorname {EllipticF}\left (x \sqrt {e^{2}}, i\right )}{\sqrt {e^{2}}\, \sqrt {-e^{4} x^{4}+1}}-\frac {\sqrt {-e^{2} x^{2}+1}\, \sqrt {e^{2} x^{2}+1}\, \left (\operatorname {EllipticF}\left (x \sqrt {e^{2}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {e^{2}}, i\right )\right )}{\sqrt {e^{2}}\, \sqrt {-e^{4} x^{4}+1}}\) \(118\)
elliptic \(\frac {\sqrt {-e^{2} x^{2}+1}\, \sqrt {e^{2} x^{2}+1}\, \operatorname {EllipticF}\left (x \sqrt {e^{2}}, i\right )}{\sqrt {e^{2}}\, \sqrt {-e^{4} x^{4}+1}}-\frac {\sqrt {-e^{2} x^{2}+1}\, \sqrt {e^{2} x^{2}+1}\, \left (\operatorname {EllipticF}\left (x \sqrt {e^{2}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {e^{2}}, i\right )\right )}{\sqrt {e^{2}}\, \sqrt {-e^{4} x^{4}+1}}\) \(118\)

Input:

int((e^2*x^2+1)/(-e^4*x^4+1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/3*e^2*x^3*hypergeom([1/2,3/4],[7/4],e^4*x^4)+x*hypergeom([1/4,1/2],[5/4] 
,e^4*x^4)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 65 vs. \(2 (9) = 18\).

Time = 0.08 (sec) , antiderivative size = 65, normalized size of antiderivative = 6.50 \[ \int \frac {1+e^2 x^2}{\sqrt {1-e^4 x^4}} \, dx=-\frac {\sqrt {-e^{4} x^{4} + 1} e^{3} - \sqrt {-e^{4}} {\left ({\left (e^{2} + 1\right )} x F(\arcsin \left (\frac {1}{e x}\right )\,|\,-1) - x E(\arcsin \left (\frac {1}{e x}\right )\,|\,-1)\right )}}{e^{5} x} \] Input:

integrate((e^2*x^2+1)/(-e^4*x^4+1)^(1/2),x, algorithm="fricas")
 

Output:

-(sqrt(-e^4*x^4 + 1)*e^3 - sqrt(-e^4)*((e^2 + 1)*x*elliptic_f(arcsin(1/(e* 
x)), -1) - x*elliptic_e(arcsin(1/(e*x)), -1)))/(e^5*x)
 

Sympy [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 71 vs. \(2 (5) = 10\).

Time = 0.79 (sec) , antiderivative size = 71, normalized size of antiderivative = 7.10 \[ \int \frac {1+e^2 x^2}{\sqrt {1-e^4 x^4}} \, dx=\frac {e^{2} x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {e^{4} x^{4} e^{2 i \pi }} \right )}}{4 \Gamma \left (\frac {7}{4}\right )} + \frac {x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {e^{4} x^{4} e^{2 i \pi }} \right )}}{4 \Gamma \left (\frac {5}{4}\right )} \] Input:

integrate((e**2*x**2+1)/(-e**4*x**4+1)**(1/2),x)
 

Output:

e**2*x**3*gamma(3/4)*hyper((1/2, 3/4), (7/4,), e**4*x**4*exp_polar(2*I*pi) 
)/(4*gamma(7/4)) + x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), e**4*x**4*exp_po 
lar(2*I*pi))/(4*gamma(5/4))
 

Maxima [F]

\[ \int \frac {1+e^2 x^2}{\sqrt {1-e^4 x^4}} \, dx=\int { \frac {e^{2} x^{2} + 1}{\sqrt {-e^{4} x^{4} + 1}} \,d x } \] Input:

integrate((e^2*x^2+1)/(-e^4*x^4+1)^(1/2),x, algorithm="maxima")
 

Output:

integrate((e^2*x^2 + 1)/sqrt(-e^4*x^4 + 1), x)
 

Giac [F]

\[ \int \frac {1+e^2 x^2}{\sqrt {1-e^4 x^4}} \, dx=\int { \frac {e^{2} x^{2} + 1}{\sqrt {-e^{4} x^{4} + 1}} \,d x } \] Input:

integrate((e^2*x^2+1)/(-e^4*x^4+1)^(1/2),x, algorithm="giac")
 

Output:

integrate((e^2*x^2 + 1)/sqrt(-e^4*x^4 + 1), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1+e^2 x^2}{\sqrt {1-e^4 x^4}} \, dx=\int \frac {e^2\,x^2+1}{\sqrt {1-e^4\,x^4}} \,d x \] Input:

int((e^2*x^2 + 1)/(1 - e^4*x^4)^(1/2),x)
 

Output:

int((e^2*x^2 + 1)/(1 - e^4*x^4)^(1/2), x)
 

Reduce [F]

\[ \int \frac {1+e^2 x^2}{\sqrt {1-e^4 x^4}} \, dx=-\left (\int \frac {\sqrt {-e^{4} x^{4}+1}}{e^{2} x^{2}-1}d x \right ) \] Input:

int((e^2*x^2+1)/(-e^4*x^4+1)^(1/2),x)
 

Output:

 - int(sqrt( - e**4*x**4 + 1)/(e**2*x**2 - 1),x)