\(\int (d+e x^2) (a+c x^4)^{3/2} \, dx\) [242]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 290 \[ \int \left (d+e x^2\right ) \left (a+c x^4\right )^{3/2} \, dx=\frac {4 a^2 e x \sqrt {a+c x^4}}{15 \sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {2}{105} a x \left (15 d+7 e x^2\right ) \sqrt {a+c x^4}+\frac {1}{63} x \left (9 d+7 e x^2\right ) \left (a+c x^4\right )^{3/2}-\frac {4 a^{9/4} e \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{15 c^{3/4} \sqrt {a+c x^4}}+\frac {2 a^{7/4} \left (15 \sqrt {c} d+7 \sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{105 c^{3/4} \sqrt {a+c x^4}} \] Output:

4/15*a^2*e*x*(c*x^4+a)^(1/2)/c^(1/2)/(a^(1/2)+c^(1/2)*x^2)+2/105*a*x*(7*e* 
x^2+15*d)*(c*x^4+a)^(1/2)+1/63*x*(7*e*x^2+9*d)*(c*x^4+a)^(3/2)-4/15*a^(9/4 
)*e*(a^(1/2)+c^(1/2)*x^2)*((c*x^4+a)/(a^(1/2)+c^(1/2)*x^2)^2)^(1/2)*Ellipt 
icE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*2^(1/2))/c^(3/4)/(c*x^4+a)^(1/2)+ 
2/105*a^(7/4)*(15*c^(1/2)*d+7*a^(1/2)*e)*(a^(1/2)+c^(1/2)*x^2)*((c*x^4+a)/ 
(a^(1/2)+c^(1/2)*x^2)^2)^(1/2)*InverseJacobiAM(2*arctan(c^(1/4)*x/a^(1/4)) 
,1/2*2^(1/2))/c^(3/4)/(c*x^4+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.04 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.27 \[ \int \left (d+e x^2\right ) \left (a+c x^4\right )^{3/2} \, dx=\frac {a \sqrt {a+c x^4} \left (3 d x \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},\frac {1}{4},\frac {5}{4},-\frac {c x^4}{a}\right )+e x^3 \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},\frac {3}{4},\frac {7}{4},-\frac {c x^4}{a}\right )\right )}{3 \sqrt {1+\frac {c x^4}{a}}} \] Input:

Integrate[(d + e*x^2)*(a + c*x^4)^(3/2),x]
 

Output:

(a*Sqrt[a + c*x^4]*(3*d*x*Hypergeometric2F1[-3/2, 1/4, 5/4, -((c*x^4)/a)] 
+ e*x^3*Hypergeometric2F1[-3/2, 3/4, 7/4, -((c*x^4)/a)]))/(3*Sqrt[1 + (c*x 
^4)/a])
 

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 295, normalized size of antiderivative = 1.02, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.421, Rules used = {1491, 27, 1491, 27, 1512, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (a+c x^4\right )^{3/2} \left (d+e x^2\right ) \, dx\)

\(\Big \downarrow \) 1491

\(\displaystyle \frac {1}{21} \int 2 a \left (7 e x^2+9 d\right ) \sqrt {c x^4+a}dx+\frac {1}{63} x \left (a+c x^4\right )^{3/2} \left (9 d+7 e x^2\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2}{21} a \int \left (7 e x^2+9 d\right ) \sqrt {c x^4+a}dx+\frac {1}{63} x \left (a+c x^4\right )^{3/2} \left (9 d+7 e x^2\right )\)

\(\Big \downarrow \) 1491

\(\displaystyle \frac {2}{21} a \left (\frac {1}{15} \int \frac {6 a \left (7 e x^2+15 d\right )}{\sqrt {c x^4+a}}dx+\frac {1}{5} x \sqrt {a+c x^4} \left (15 d+7 e x^2\right )\right )+\frac {1}{63} x \left (a+c x^4\right )^{3/2} \left (9 d+7 e x^2\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2}{21} a \left (\frac {2}{5} a \int \frac {7 e x^2+15 d}{\sqrt {c x^4+a}}dx+\frac {1}{5} x \sqrt {a+c x^4} \left (15 d+7 e x^2\right )\right )+\frac {1}{63} x \left (a+c x^4\right )^{3/2} \left (9 d+7 e x^2\right )\)

\(\Big \downarrow \) 1512

\(\displaystyle \frac {2}{21} a \left (\frac {2}{5} a \left (\left (\frac {7 \sqrt {a} e}{\sqrt {c}}+15 d\right ) \int \frac {1}{\sqrt {c x^4+a}}dx-\frac {7 \sqrt {a} e \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {a} \sqrt {c x^4+a}}dx}{\sqrt {c}}\right )+\frac {1}{5} x \sqrt {a+c x^4} \left (15 d+7 e x^2\right )\right )+\frac {1}{63} x \left (a+c x^4\right )^{3/2} \left (9 d+7 e x^2\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2}{21} a \left (\frac {2}{5} a \left (\left (\frac {7 \sqrt {a} e}{\sqrt {c}}+15 d\right ) \int \frac {1}{\sqrt {c x^4+a}}dx-\frac {7 e \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+a}}dx}{\sqrt {c}}\right )+\frac {1}{5} x \sqrt {a+c x^4} \left (15 d+7 e x^2\right )\right )+\frac {1}{63} x \left (a+c x^4\right )^{3/2} \left (9 d+7 e x^2\right )\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {2}{21} a \left (\frac {2}{5} a \left (\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\frac {7 \sqrt {a} e}{\sqrt {c}}+15 d\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+c x^4}}-\frac {7 e \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+a}}dx}{\sqrt {c}}\right )+\frac {1}{5} x \sqrt {a+c x^4} \left (15 d+7 e x^2\right )\right )+\frac {1}{63} x \left (a+c x^4\right )^{3/2} \left (9 d+7 e x^2\right )\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {2}{21} a \left (\frac {2}{5} a \left (\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\frac {7 \sqrt {a} e}{\sqrt {c}}+15 d\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+c x^4}}-\frac {7 e \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{c} \sqrt {a+c x^4}}-\frac {x \sqrt {a+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{\sqrt {c}}\right )+\frac {1}{5} x \sqrt {a+c x^4} \left (15 d+7 e x^2\right )\right )+\frac {1}{63} x \left (a+c x^4\right )^{3/2} \left (9 d+7 e x^2\right )\)

Input:

Int[(d + e*x^2)*(a + c*x^4)^(3/2),x]
 

Output:

(x*(9*d + 7*e*x^2)*(a + c*x^4)^(3/2))/63 + (2*a*((x*(15*d + 7*e*x^2)*Sqrt[ 
a + c*x^4])/5 + (2*a*((-7*e*(-((x*Sqrt[a + c*x^4])/(Sqrt[a] + Sqrt[c]*x^2) 
) + (a^(1/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x 
^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(c^(1/4)*Sqrt[a + c* 
x^4])))/Sqrt[c] + ((15*d + (7*Sqrt[a]*e)/Sqrt[c])*(Sqrt[a] + Sqrt[c]*x^2)* 
Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x) 
/a^(1/4)], 1/2])/(2*a^(1/4)*c^(1/4)*Sqrt[a + c*x^4])))/5))/21
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1491
Int[((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*( 
d*(4*p + 3) + e*(4*p + 1)*x^2)*((a + c*x^4)^p/((4*p + 1)*(4*p + 3))), x] + 
Simp[2*(p/((4*p + 1)*(4*p + 3)))   Int[Simp[2*a*d*(4*p + 3) + (2*a*e*(4*p + 
 1))*x^2, x]*(a + c*x^4)^(p - 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c 
*d^2 + a*e^2, 0] && GtQ[p, 0] && FractionQ[p] && IntegerQ[2*p]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 1512
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + c*x^4], x], x] - Simp[e/q 
 Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a, c 
, d, e}, x] && PosQ[c/a]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.07 (sec) , antiderivative size = 214, normalized size of antiderivative = 0.74

method result size
risch \(\frac {x \left (35 c e \,x^{6}+45 c d \,x^{4}+77 a e \,x^{2}+135 a d \right ) \sqrt {c \,x^{4}+a}}{315}+\frac {4 a^{2} \left (\frac {15 d \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {7 i e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}\right )}{105}\) \(214\)
default \(d \left (\frac {c \,x^{5} \sqrt {c \,x^{4}+a}}{7}+\frac {3 a x \sqrt {c \,x^{4}+a}}{7}+\frac {4 a^{2} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{7 \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\right )+e \left (\frac {c \,x^{7} \sqrt {c \,x^{4}+a}}{9}+\frac {11 a \,x^{3} \sqrt {c \,x^{4}+a}}{45}+\frac {4 i a^{\frac {5}{2}} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{15 \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}\right )\) \(235\)
elliptic \(\frac {c e \,x^{7} \sqrt {c \,x^{4}+a}}{9}+\frac {c d \,x^{5} \sqrt {c \,x^{4}+a}}{7}+\frac {11 a e \,x^{3} \sqrt {c \,x^{4}+a}}{45}+\frac {3 a d x \sqrt {c \,x^{4}+a}}{7}+\frac {4 a^{2} d \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{7 \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {4 i a^{\frac {5}{2}} e \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{15 \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}\) \(235\)

Input:

int((e*x^2+d)*(c*x^4+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/315*x*(35*c*e*x^6+45*c*d*x^4+77*a*e*x^2+135*a*d)*(c*x^4+a)^(1/2)+4/105*a 
^2*(15*d/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^ 
(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^( 
1/2),I)+7*I*e*a^(1/2)/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^ 
(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)/c^(1/2)*(EllipticF(x 
*(I/a^(1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*c^(1/2))^(1/2),I)))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 134, normalized size of antiderivative = 0.46 \[ \int \left (d+e x^2\right ) \left (a+c x^4\right )^{3/2} \, dx=\frac {84 \, a^{2} \sqrt {c} e x \left (-\frac {a}{c}\right )^{\frac {3}{4}} E(\arcsin \left (\frac {\left (-\frac {a}{c}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + 12 \, {\left (15 \, a c d - 7 \, a^{2} e\right )} \sqrt {c} x \left (-\frac {a}{c}\right )^{\frac {3}{4}} F(\arcsin \left (\frac {\left (-\frac {a}{c}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + {\left (35 \, c^{2} e x^{8} + 45 \, c^{2} d x^{6} + 77 \, a c e x^{4} + 135 \, a c d x^{2} + 84 \, a^{2} e\right )} \sqrt {c x^{4} + a}}{315 \, c x} \] Input:

integrate((e*x^2+d)*(c*x^4+a)^(3/2),x, algorithm="fricas")
 

Output:

1/315*(84*a^2*sqrt(c)*e*x*(-a/c)^(3/4)*elliptic_e(arcsin((-a/c)^(1/4)/x), 
-1) + 12*(15*a*c*d - 7*a^2*e)*sqrt(c)*x*(-a/c)^(3/4)*elliptic_f(arcsin((-a 
/c)^(1/4)/x), -1) + (35*c^2*e*x^8 + 45*c^2*d*x^6 + 77*a*c*e*x^4 + 135*a*c* 
d*x^2 + 84*a^2*e)*sqrt(c*x^4 + a))/(c*x)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.62 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.59 \[ \int \left (d+e x^2\right ) \left (a+c x^4\right )^{3/2} \, dx=\frac {a^{\frac {3}{2}} d x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {1}{4} \\ \frac {5}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {5}{4}\right )} + \frac {a^{\frac {3}{2}} e x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {7}{4}\right )} + \frac {\sqrt {a} c d x^{5} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {5}{4} \\ \frac {9}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {9}{4}\right )} + \frac {\sqrt {a} c e x^{7} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {7}{4} \\ \frac {11}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {11}{4}\right )} \] Input:

integrate((e*x**2+d)*(c*x**4+a)**(3/2),x)
 

Output:

a**(3/2)*d*x*gamma(1/4)*hyper((-1/2, 1/4), (5/4,), c*x**4*exp_polar(I*pi)/ 
a)/(4*gamma(5/4)) + a**(3/2)*e*x**3*gamma(3/4)*hyper((-1/2, 3/4), (7/4,), 
c*x**4*exp_polar(I*pi)/a)/(4*gamma(7/4)) + sqrt(a)*c*d*x**5*gamma(5/4)*hyp 
er((-1/2, 5/4), (9/4,), c*x**4*exp_polar(I*pi)/a)/(4*gamma(9/4)) + sqrt(a) 
*c*e*x**7*gamma(7/4)*hyper((-1/2, 7/4), (11/4,), c*x**4*exp_polar(I*pi)/a) 
/(4*gamma(11/4))
 

Maxima [F]

\[ \int \left (d+e x^2\right ) \left (a+c x^4\right )^{3/2} \, dx=\int { {\left (c x^{4} + a\right )}^{\frac {3}{2}} {\left (e x^{2} + d\right )} \,d x } \] Input:

integrate((e*x^2+d)*(c*x^4+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate((c*x^4 + a)^(3/2)*(e*x^2 + d), x)
 

Giac [F]

\[ \int \left (d+e x^2\right ) \left (a+c x^4\right )^{3/2} \, dx=\int { {\left (c x^{4} + a\right )}^{\frac {3}{2}} {\left (e x^{2} + d\right )} \,d x } \] Input:

integrate((e*x^2+d)*(c*x^4+a)^(3/2),x, algorithm="giac")
 

Output:

integrate((c*x^4 + a)^(3/2)*(e*x^2 + d), x)
 

Mupad [F(-1)]

Timed out. \[ \int \left (d+e x^2\right ) \left (a+c x^4\right )^{3/2} \, dx=\int {\left (c\,x^4+a\right )}^{3/2}\,\left (e\,x^2+d\right ) \,d x \] Input:

int((a + c*x^4)^(3/2)*(d + e*x^2),x)
 

Output:

int((a + c*x^4)^(3/2)*(d + e*x^2), x)
 

Reduce [F]

\[ \int \left (d+e x^2\right ) \left (a+c x^4\right )^{3/2} \, dx=\frac {3 \sqrt {c \,x^{4}+a}\, a d x}{7}+\frac {11 \sqrt {c \,x^{4}+a}\, a e \,x^{3}}{45}+\frac {\sqrt {c \,x^{4}+a}\, c d \,x^{5}}{7}+\frac {\sqrt {c \,x^{4}+a}\, c e \,x^{7}}{9}+\frac {4 \left (\int \frac {\sqrt {c \,x^{4}+a}}{c \,x^{4}+a}d x \right ) a^{2} d}{7}+\frac {4 \left (\int \frac {\sqrt {c \,x^{4}+a}\, x^{2}}{c \,x^{4}+a}d x \right ) a^{2} e}{15} \] Input:

int((e*x^2+d)*(c*x^4+a)^(3/2),x)
 

Output:

(135*sqrt(a + c*x**4)*a*d*x + 77*sqrt(a + c*x**4)*a*e*x**3 + 45*sqrt(a + c 
*x**4)*c*d*x**5 + 35*sqrt(a + c*x**4)*c*e*x**7 + 180*int(sqrt(a + c*x**4)/ 
(a + c*x**4),x)*a**2*d + 84*int((sqrt(a + c*x**4)*x**2)/(a + c*x**4),x)*a* 
*2*e)/315