\(\int \frac {1+b x^2}{(-1+b^2 x^4)^{5/2}} \, dx\) [271]

Optimal result
Mathematica [C] (verified)
Rubi [F]
Maple [C] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 144 \[ \int \frac {1+b x^2}{\left (-1+b^2 x^4\right )^{5/2}} \, dx=-\frac {x \left (1+b x^2\right )}{6 \left (-1+b^2 x^4\right )^{3/2}}+\frac {x \left (5+3 b x^2\right )}{12 \sqrt {-1+b^2 x^4}}-\frac {\sqrt {1-b^2 x^4} E\left (\left .\arcsin \left (\sqrt {b} x\right )\right |-1\right )}{4 \sqrt {b} \sqrt {-1+b^2 x^4}}+\frac {2 \sqrt {1-b^2 x^4} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {b} x\right ),-1\right )}{3 \sqrt {b} \sqrt {-1+b^2 x^4}} \] Output:

-1/6*x*(b*x^2+1)/(b^2*x^4-1)^(3/2)+1/12*x*(3*b*x^2+5)/(b^2*x^4-1)^(1/2)-1/ 
4*(-b^2*x^4+1)^(1/2)*EllipticE(b^(1/2)*x,I)/b^(1/2)/(b^2*x^4-1)^(1/2)+2/3* 
(-b^2*x^4+1)^(1/2)*EllipticF(b^(1/2)*x,I)/b^(1/2)/(b^2*x^4-1)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.07 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.68 \[ \int \frac {1+b x^2}{\left (-1+b^2 x^4\right )^{5/2}} \, dx=\frac {x \left (-7+5 b^2 x^4-5 \left (1-b^2 x^4\right )^{3/2} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},b^2 x^4\right )-4 b x^2 \left (1-b^2 x^4\right )^{3/2} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {5}{2},\frac {7}{4},b^2 x^4\right )\right )}{12 \left (-1+b^2 x^4\right )^{3/2}} \] Input:

Integrate[(1 + b*x^2)/(-1 + b^2*x^4)^(5/2),x]
 

Output:

(x*(-7 + 5*b^2*x^4 - 5*(1 - b^2*x^4)^(3/2)*Hypergeometric2F1[1/4, 1/2, 5/4 
, b^2*x^4] - 4*b*x^2*(1 - b^2*x^4)^(3/2)*Hypergeometric2F1[3/4, 5/2, 7/4, 
b^2*x^4]))/(12*(-1 + b^2*x^4)^(3/2))
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {b x^2+1}{\left (b^2 x^4-1\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 1571

\(\displaystyle \int \frac {b x^2+1}{\left (b^2 x^4-1\right )^{5/2}}dx\)

Input:

Int[(1 + b*x^2)/(-1 + b^2*x^4)^(5/2),x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 1571
Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> U 
nintegrable[(d + e*x^2)^q*(a + c*x^4)^p, x] /; FreeQ[{a, c, d, e, p, q}, x]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.04 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.61

method result size
meijerg \(\frac {{\left (-\operatorname {signum}\left (b^{2} x^{4}-1\right )\right )}^{\frac {5}{2}} x \operatorname {hypergeom}\left (\left [\frac {1}{4}, \frac {5}{2}\right ], \left [\frac {5}{4}\right ], b^{2} x^{4}\right )}{\operatorname {signum}\left (b^{2} x^{4}-1\right )^{\frac {5}{2}}}+\frac {b {\left (-\operatorname {signum}\left (b^{2} x^{4}-1\right )\right )}^{\frac {5}{2}} x^{3} \operatorname {hypergeom}\left (\left [\frac {3}{4}, \frac {5}{2}\right ], \left [\frac {7}{4}\right ], b^{2} x^{4}\right )}{3 \operatorname {signum}\left (b^{2} x^{4}-1\right )^{\frac {5}{2}}}\) \(88\)
default \(-\frac {x \sqrt {b^{2} x^{4}-1}}{6 b^{4} \left (x^{4}-\frac {1}{b^{2}}\right )^{2}}+\frac {5 x}{12 \sqrt {\left (x^{4}-\frac {1}{b^{2}}\right ) b^{2}}}+\frac {5 \sqrt {b \,x^{2}+1}\, \sqrt {-b \,x^{2}+1}\, \operatorname {EllipticF}\left (x \sqrt {-b}, i\right )}{12 \sqrt {-b}\, \sqrt {b^{2} x^{4}-1}}+b \left (-\frac {x^{3} \sqrt {b^{2} x^{4}-1}}{6 b^{4} \left (x^{4}-\frac {1}{b^{2}}\right )^{2}}+\frac {x^{3}}{4 \sqrt {\left (x^{4}-\frac {1}{b^{2}}\right ) b^{2}}}-\frac {\sqrt {b \,x^{2}+1}\, \sqrt {-b \,x^{2}+1}\, \left (\operatorname {EllipticF}\left (x \sqrt {-b}, i\right )-\operatorname {EllipticE}\left (x \sqrt {-b}, i\right )\right )}{4 \sqrt {-b}\, \sqrt {b^{2} x^{4}-1}\, b}\right )\) \(211\)
elliptic \(-\frac {x \sqrt {b^{2} x^{4}-1}}{12 b^{2} \left (x^{2}-\frac {1}{b}\right )^{2}}+\frac {3 \left (b^{2} x^{2}+b \right ) x}{8 b \sqrt {\left (x^{2}-\frac {1}{b}\right ) \left (b^{2} x^{2}+b \right )}}-\frac {\left (b^{2} x^{2}-b \right ) x}{8 b \sqrt {\left (x^{2}+\frac {1}{b}\right ) \left (b^{2} x^{2}-b \right )}}+\frac {5 \sqrt {b \,x^{2}+1}\, \sqrt {-b \,x^{2}+1}\, \operatorname {EllipticF}\left (x \sqrt {-b}, i\right )}{12 \sqrt {-b}\, \sqrt {b^{2} x^{4}-1}}-\frac {\sqrt {b \,x^{2}+1}\, \sqrt {-b \,x^{2}+1}\, \left (\operatorname {EllipticF}\left (x \sqrt {-b}, i\right )-\operatorname {EllipticE}\left (x \sqrt {-b}, i\right )\right )}{4 \sqrt {-b}\, \sqrt {b^{2} x^{4}-1}}\) \(211\)

Input:

int((b*x^2+1)/(b^2*x^4-1)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/signum(b^2*x^4-1)^(5/2)*(-signum(b^2*x^4-1))^(5/2)*x*hypergeom([1/4,5/2] 
,[5/4],b^2*x^4)+1/3*b/signum(b^2*x^4-1)^(5/2)*(-signum(b^2*x^4-1))^(5/2)*x 
^3*hypergeom([3/4,5/2],[7/4],b^2*x^4)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.17 \[ \int \frac {1+b x^2}{\left (-1+b^2 x^4\right )^{5/2}} \, dx=-\frac {3 \, {\left (-i \, b^{4} x^{6} + i \, b^{3} x^{4} + i \, b^{2} x^{2} - i \, b\right )} \sqrt {b} E(\arcsin \left (\sqrt {b} x\right )\,|\,-1) - {\left (-i \, {\left (3 \, b^{4} + 5 \, b^{3}\right )} x^{6} + i \, {\left (3 \, b^{3} + 5 \, b^{2}\right )} x^{4} + i \, {\left (3 \, b^{2} + 5 \, b\right )} x^{2} - 3 i \, b - 5 i\right )} \sqrt {b} F(\arcsin \left (\sqrt {b} x\right )\,|\,-1) - {\left (3 \, b^{3} x^{5} + 2 \, b^{2} x^{3} - 7 \, b x\right )} \sqrt {b^{2} x^{4} - 1}}{12 \, {\left (b^{4} x^{6} - b^{3} x^{4} - b^{2} x^{2} + b\right )}} \] Input:

integrate((b*x^2+1)/(b^2*x^4-1)^(5/2),x, algorithm="fricas")
 

Output:

-1/12*(3*(-I*b^4*x^6 + I*b^3*x^4 + I*b^2*x^2 - I*b)*sqrt(b)*elliptic_e(arc 
sin(sqrt(b)*x), -1) - (-I*(3*b^4 + 5*b^3)*x^6 + I*(3*b^3 + 5*b^2)*x^4 + I* 
(3*b^2 + 5*b)*x^2 - 3*I*b - 5*I)*sqrt(b)*elliptic_f(arcsin(sqrt(b)*x), -1) 
 - (3*b^3*x^5 + 2*b^2*x^3 - 7*b*x)*sqrt(b^2*x^4 - 1))/(b^4*x^6 - b^3*x^4 - 
 b^2*x^2 + b)
 

Sympy [A] (verification not implemented)

Time = 5.07 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.42 \[ \int \frac {1+b x^2}{\left (-1+b^2 x^4\right )^{5/2}} \, dx=- \frac {i b x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{4}, \frac {5}{2} \\ \frac {7}{4} \end {matrix}\middle | {b^{2} x^{4}} \right )}}{4 \Gamma \left (\frac {7}{4}\right )} - \frac {i x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {5}{2} \\ \frac {5}{4} \end {matrix}\middle | {b^{2} x^{4}} \right )}}{4 \Gamma \left (\frac {5}{4}\right )} \] Input:

integrate((b*x**2+1)/(b**2*x**4-1)**(5/2),x)
 

Output:

-I*b*x**3*gamma(3/4)*hyper((3/4, 5/2), (7/4,), b**2*x**4)/(4*gamma(7/4)) - 
 I*x*gamma(1/4)*hyper((1/4, 5/2), (5/4,), b**2*x**4)/(4*gamma(5/4))
 

Maxima [F]

\[ \int \frac {1+b x^2}{\left (-1+b^2 x^4\right )^{5/2}} \, dx=\int { \frac {b x^{2} + 1}{{\left (b^{2} x^{4} - 1\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((b*x^2+1)/(b^2*x^4-1)^(5/2),x, algorithm="maxima")
 

Output:

integrate((b*x^2 + 1)/(b^2*x^4 - 1)^(5/2), x)
 

Giac [F]

\[ \int \frac {1+b x^2}{\left (-1+b^2 x^4\right )^{5/2}} \, dx=\int { \frac {b x^{2} + 1}{{\left (b^{2} x^{4} - 1\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((b*x^2+1)/(b^2*x^4-1)^(5/2),x, algorithm="giac")
 

Output:

integrate((b*x^2 + 1)/(b^2*x^4 - 1)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1+b x^2}{\left (-1+b^2 x^4\right )^{5/2}} \, dx=\int \frac {b\,x^2+1}{{\left (b^2\,x^4-1\right )}^{5/2}} \,d x \] Input:

int((b*x^2 + 1)/(b^2*x^4 - 1)^(5/2),x)
 

Output:

int((b*x^2 + 1)/(b^2*x^4 - 1)^(5/2), x)
 

Reduce [F]

\[ \int \frac {1+b x^2}{\left (-1+b^2 x^4\right )^{5/2}} \, dx=\int \frac {\sqrt {b^{2} x^{4}-1}}{b^{5} x^{10}-b^{4} x^{8}-2 b^{3} x^{6}+2 b^{2} x^{4}+b \,x^{2}-1}d x \] Input:

int((b*x^2+1)/(b^2*x^4-1)^(5/2),x)
 

Output:

int(sqrt(b**2*x**4 - 1)/(b**5*x**10 - b**4*x**8 - 2*b**3*x**6 + 2*b**2*x** 
4 + b*x**2 - 1),x)