\(\int \frac {1-b x^2}{(-1+b^2 x^4)^{7/2}} \, dx\) [278]

Optimal result
Mathematica [C] (verified)
Rubi [F]
Maple [C] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 171 \[ \int \frac {1-b x^2}{\left (-1+b^2 x^4\right )^{7/2}} \, dx=-\frac {x \left (1-b x^2\right )}{10 \left (-1+b^2 x^4\right )^{5/2}}+\frac {x \left (9-7 b x^2\right )}{60 \left (-1+b^2 x^4\right )^{3/2}}-\frac {x \left (15-7 b x^2\right )}{40 \sqrt {-1+b^2 x^4}}-\frac {7 \sqrt {1-b^2 x^4} E\left (\left .\arcsin \left (\sqrt {b} x\right )\right |-1\right )}{40 \sqrt {b} \sqrt {-1+b^2 x^4}}-\frac {\sqrt {1-b^2 x^4} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {b} x\right ),-1\right )}{5 \sqrt {b} \sqrt {-1+b^2 x^4}} \] Output:

-1/10*x*(-b*x^2+1)/(b^2*x^4-1)^(5/2)+1/60*x*(-7*b*x^2+9)/(b^2*x^4-1)^(3/2) 
-1/40*x*(-7*b*x^2+15)/(b^2*x^4-1)^(1/2)-7/40*(-b^2*x^4+1)^(1/2)*EllipticE( 
b^(1/2)*x,I)/b^(1/2)/(b^2*x^4-1)^(1/2)-1/5*(-b^2*x^4+1)^(1/2)*EllipticF(b^ 
(1/2)*x,I)/b^(1/2)/(b^2*x^4-1)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.07 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.62 \[ \int \frac {1-b x^2}{\left (-1+b^2 x^4\right )^{7/2}} \, dx=\frac {x \left (-75+108 b^2 x^4-45 b^4 x^8-45 \left (1-b^2 x^4\right )^{5/2} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},b^2 x^4\right )+40 b x^2 \left (1-b^2 x^4\right )^{5/2} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {7}{2},\frac {7}{4},b^2 x^4\right )\right )}{120 \left (-1+b^2 x^4\right )^{5/2}} \] Input:

Integrate[(1 - b*x^2)/(-1 + b^2*x^4)^(7/2),x]
 

Output:

(x*(-75 + 108*b^2*x^4 - 45*b^4*x^8 - 45*(1 - b^2*x^4)^(5/2)*Hypergeometric 
2F1[1/4, 1/2, 5/4, b^2*x^4] + 40*b*x^2*(1 - b^2*x^4)^(5/2)*Hypergeometric2 
F1[3/4, 7/2, 7/4, b^2*x^4]))/(120*(-1 + b^2*x^4)^(5/2))
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1-b x^2}{\left (b^2 x^4-1\right )^{7/2}} \, dx\)

\(\Big \downarrow \) 1571

\(\displaystyle \int \frac {1-b x^2}{\left (b^2 x^4-1\right )^{7/2}}dx\)

Input:

Int[(1 - b*x^2)/(-1 + b^2*x^4)^(7/2),x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 1571
Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> U 
nintegrable[(d + e*x^2)^q*(a + c*x^4)^p, x] /; FreeQ[{a, c, d, e, p, q}, x]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.28 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.51

method result size
meijerg \(\frac {{\left (-\operatorname {signum}\left (b^{2} x^{4}-1\right )\right )}^{\frac {7}{2}} x \operatorname {hypergeom}\left (\left [\frac {1}{4}, \frac {7}{2}\right ], \left [\frac {5}{4}\right ], b^{2} x^{4}\right )}{\operatorname {signum}\left (b^{2} x^{4}-1\right )^{\frac {7}{2}}}-\frac {b {\left (-\operatorname {signum}\left (b^{2} x^{4}-1\right )\right )}^{\frac {7}{2}} x^{3} \operatorname {hypergeom}\left (\left [\frac {3}{4}, \frac {7}{2}\right ], \left [\frac {7}{4}\right ], b^{2} x^{4}\right )}{3 \operatorname {signum}\left (b^{2} x^{4}-1\right )^{\frac {7}{2}}}\) \(88\)
elliptic \(\frac {x \sqrt {b^{2} x^{4}-1}}{48 b^{2} \left (x^{2}-\frac {1}{b}\right )^{2}}-\frac {5 \left (b^{2} x^{2}+b \right ) x}{32 b \sqrt {\left (x^{2}-\frac {1}{b}\right ) \left (b^{2} x^{2}+b \right )}}+\frac {x \sqrt {b^{2} x^{4}-1}}{40 b^{3} \left (x^{2}+\frac {1}{b}\right )^{3}}+\frac {11 x \sqrt {b^{2} x^{4}-1}}{120 b^{2} \left (x^{2}+\frac {1}{b}\right )^{2}}+\frac {53 \left (b^{2} x^{2}-b \right ) x}{160 b \sqrt {\left (x^{2}+\frac {1}{b}\right ) \left (b^{2} x^{2}-b \right )}}-\frac {3 \sqrt {b \,x^{2}+1}\, \sqrt {-b \,x^{2}+1}\, \operatorname {EllipticF}\left (x \sqrt {-b}, i\right )}{8 \sqrt {-b}\, \sqrt {b^{2} x^{4}-1}}-\frac {7 \sqrt {b \,x^{2}+1}\, \sqrt {-b \,x^{2}+1}\, \left (\operatorname {EllipticF}\left (x \sqrt {-b}, i\right )-\operatorname {EllipticE}\left (x \sqrt {-b}, i\right )\right )}{40 \sqrt {-b}\, \sqrt {b^{2} x^{4}-1}}\) \(263\)
default \(-b \left (-\frac {x^{3} \sqrt {b^{2} x^{4}-1}}{10 b^{6} \left (x^{4}-\frac {1}{b^{2}}\right )^{3}}+\frac {7 x^{3} \sqrt {b^{2} x^{4}-1}}{60 b^{4} \left (x^{4}-\frac {1}{b^{2}}\right )^{2}}-\frac {7 x^{3}}{40 \sqrt {\left (x^{4}-\frac {1}{b^{2}}\right ) b^{2}}}+\frac {7 \sqrt {b \,x^{2}+1}\, \sqrt {-b \,x^{2}+1}\, \left (\operatorname {EllipticF}\left (x \sqrt {-b}, i\right )-\operatorname {EllipticE}\left (x \sqrt {-b}, i\right )\right )}{40 \sqrt {-b}\, \sqrt {b^{2} x^{4}-1}\, b}\right )-\frac {x \sqrt {b^{2} x^{4}-1}}{10 b^{6} \left (x^{4}-\frac {1}{b^{2}}\right )^{3}}+\frac {3 x \sqrt {b^{2} x^{4}-1}}{20 b^{4} \left (x^{4}-\frac {1}{b^{2}}\right )^{2}}-\frac {3 x}{8 \sqrt {\left (x^{4}-\frac {1}{b^{2}}\right ) b^{2}}}-\frac {3 \sqrt {b \,x^{2}+1}\, \sqrt {-b \,x^{2}+1}\, \operatorname {EllipticF}\left (x \sqrt {-b}, i\right )}{8 \sqrt {-b}\, \sqrt {b^{2} x^{4}-1}}\) \(270\)

Input:

int((-b*x^2+1)/(b^2*x^4-1)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

1/signum(b^2*x^4-1)^(7/2)*(-signum(b^2*x^4-1))^(7/2)*x*hypergeom([1/4,7/2] 
,[5/4],b^2*x^4)-1/3*b/signum(b^2*x^4-1)^(7/2)*(-signum(b^2*x^4-1))^(7/2)*x 
^3*hypergeom([3/4,7/2],[7/4],b^2*x^4)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.44 \[ \int \frac {1-b x^2}{\left (-1+b^2 x^4\right )^{7/2}} \, dx=-\frac {21 \, {\left (-i \, b^{6} x^{10} - i \, b^{5} x^{8} + 2 i \, b^{4} x^{6} + 2 i \, b^{3} x^{4} - i \, b^{2} x^{2} - i \, b\right )} \sqrt {b} E(\arcsin \left (\sqrt {b} x\right )\,|\,-1) + 3 \, {\left (i \, {\left (7 \, b^{6} - 15 \, b^{5}\right )} x^{10} + i \, {\left (7 \, b^{5} - 15 \, b^{4}\right )} x^{8} - 2 i \, {\left (7 \, b^{4} - 15 \, b^{3}\right )} x^{6} - 2 i \, {\left (7 \, b^{3} - 15 \, b^{2}\right )} x^{4} + i \, {\left (7 \, b^{2} - 15 \, b\right )} x^{2} + 7 i \, b - 15 i\right )} \sqrt {b} F(\arcsin \left (\sqrt {b} x\right )\,|\,-1) - {\left (21 \, b^{5} x^{9} - 24 \, b^{4} x^{7} - 80 \, b^{3} x^{5} + 28 \, b^{2} x^{3} + 75 \, b x\right )} \sqrt {b^{2} x^{4} - 1}}{120 \, {\left (b^{6} x^{10} + b^{5} x^{8} - 2 \, b^{4} x^{6} - 2 \, b^{3} x^{4} + b^{2} x^{2} + b\right )}} \] Input:

integrate((-b*x^2+1)/(b^2*x^4-1)^(7/2),x, algorithm="fricas")
 

Output:

-1/120*(21*(-I*b^6*x^10 - I*b^5*x^8 + 2*I*b^4*x^6 + 2*I*b^3*x^4 - I*b^2*x^ 
2 - I*b)*sqrt(b)*elliptic_e(arcsin(sqrt(b)*x), -1) + 3*(I*(7*b^6 - 15*b^5) 
*x^10 + I*(7*b^5 - 15*b^4)*x^8 - 2*I*(7*b^4 - 15*b^3)*x^6 - 2*I*(7*b^3 - 1 
5*b^2)*x^4 + I*(7*b^2 - 15*b)*x^2 + 7*I*b - 15*I)*sqrt(b)*elliptic_f(arcsi 
n(sqrt(b)*x), -1) - (21*b^5*x^9 - 24*b^4*x^7 - 80*b^3*x^5 + 28*b^2*x^3 + 7 
5*b*x)*sqrt(b^2*x^4 - 1))/(b^6*x^10 + b^5*x^8 - 2*b^4*x^6 - 2*b^3*x^4 + b^ 
2*x^2 + b)
 

Sympy [A] (verification not implemented)

Time = 11.94 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.35 \[ \int \frac {1-b x^2}{\left (-1+b^2 x^4\right )^{7/2}} \, dx=- \frac {i b x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{4}, \frac {7}{2} \\ \frac {7}{4} \end {matrix}\middle | {b^{2} x^{4}} \right )}}{4 \Gamma \left (\frac {7}{4}\right )} + \frac {i x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {7}{2} \\ \frac {5}{4} \end {matrix}\middle | {b^{2} x^{4}} \right )}}{4 \Gamma \left (\frac {5}{4}\right )} \] Input:

integrate((-b*x**2+1)/(b**2*x**4-1)**(7/2),x)
 

Output:

-I*b*x**3*gamma(3/4)*hyper((3/4, 7/2), (7/4,), b**2*x**4)/(4*gamma(7/4)) + 
 I*x*gamma(1/4)*hyper((1/4, 7/2), (5/4,), b**2*x**4)/(4*gamma(5/4))
 

Maxima [F]

\[ \int \frac {1-b x^2}{\left (-1+b^2 x^4\right )^{7/2}} \, dx=\int { -\frac {b x^{2} - 1}{{\left (b^{2} x^{4} - 1\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate((-b*x^2+1)/(b^2*x^4-1)^(7/2),x, algorithm="maxima")
 

Output:

-integrate((b*x^2 - 1)/(b^2*x^4 - 1)^(7/2), x)
 

Giac [F]

\[ \int \frac {1-b x^2}{\left (-1+b^2 x^4\right )^{7/2}} \, dx=\int { -\frac {b x^{2} - 1}{{\left (b^{2} x^{4} - 1\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate((-b*x^2+1)/(b^2*x^4-1)^(7/2),x, algorithm="giac")
 

Output:

integrate(-(b*x^2 - 1)/(b^2*x^4 - 1)^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1-b x^2}{\left (-1+b^2 x^4\right )^{7/2}} \, dx=-\int \frac {b\,x^2-1}{{\left (b^2\,x^4-1\right )}^{7/2}} \,d x \] Input:

int(-(b*x^2 - 1)/(b^2*x^4 - 1)^(7/2),x)
 

Output:

-int((b*x^2 - 1)/(b^2*x^4 - 1)^(7/2), x)
 

Reduce [F]

\[ \int \frac {1-b x^2}{\left (-1+b^2 x^4\right )^{7/2}} \, dx=-\left (\int \frac {\sqrt {b^{2} x^{4}-1}}{b^{7} x^{14}+b^{6} x^{12}-3 b^{5} x^{10}-3 b^{4} x^{8}+3 b^{3} x^{6}+3 b^{2} x^{4}-b \,x^{2}-1}d x \right ) \] Input:

int((-b*x^2+1)/(b^2*x^4-1)^(7/2),x)
 

Output:

 - int(sqrt(b**2*x**4 - 1)/(b**7*x**14 + b**6*x**12 - 3*b**5*x**10 - 3*b** 
4*x**8 + 3*b**3*x**6 + 3*b**2*x**4 - b*x**2 - 1),x)