\(\int \frac {1+b x^2}{(-1-b^2 x^4)^{9/2}} \, dx\) [293]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (warning: unable to verify)
Fricas [C] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 270 \[ \int \frac {1+b x^2}{\left (-1-b^2 x^4\right )^{9/2}} \, dx=-\frac {x \left (1+b x^2\right )}{14 \left (-1-b^2 x^4\right )^{7/2}}+\frac {x \left (13+11 b x^2\right )}{140 \left (-1-b^2 x^4\right )^{5/2}}-\frac {x \left (117+77 b x^2\right )}{840 \left (-1-b^2 x^4\right )^{3/2}}+\frac {x \left (195+77 b x^2\right )}{560 \sqrt {-1-b^2 x^4}}+\frac {11 x \sqrt {-1-b^2 x^4}}{80 \left (1+b x^2\right )}+\frac {11 \left (1+b x^2\right ) \sqrt {\frac {1+b^2 x^4}{\left (1+b x^2\right )^2}} E\left (2 \arctan \left (\sqrt {b} x\right )|\frac {1}{2}\right )}{80 \sqrt {b} \sqrt {-1-b^2 x^4}}+\frac {59 \left (1+b x^2\right ) \sqrt {\frac {1+b^2 x^4}{\left (1+b x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\sqrt {b} x\right ),\frac {1}{2}\right )}{560 \sqrt {b} \sqrt {-1-b^2 x^4}} \] Output:

-1/14*x*(b*x^2+1)/(-b^2*x^4-1)^(7/2)+1/140*x*(11*b*x^2+13)/(-b^2*x^4-1)^(5 
/2)-1/840*x*(77*b*x^2+117)/(-b^2*x^4-1)^(3/2)+1/560*x*(77*b*x^2+195)/(-b^2 
*x^4-1)^(1/2)+11*x*(-b^2*x^4-1)^(1/2)/(80*b*x^2+80)+11/80*(b*x^2+1)*((b^2* 
x^4+1)/(b*x^2+1)^2)^(1/2)*EllipticE(sin(2*arctan(b^(1/2)*x)),1/2*2^(1/2))/ 
b^(1/2)/(-b^2*x^4-1)^(1/2)+59/560*(b*x^2+1)*((b^2*x^4+1)/(b*x^2+1)^2)^(1/2 
)*InverseJacobiAM(2*arctan(b^(1/2)*x),1/2*2^(1/2))/b^(1/2)/(-b^2*x^4-1)^(1 
/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.07 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.43 \[ \int \frac {1+b x^2}{\left (-1-b^2 x^4\right )^{9/2}} \, dx=-\frac {x \left (1095+2379 b^2 x^4+1989 b^4 x^8+585 b^6 x^{12}+585 \left (1+b^2 x^4\right )^{7/2} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-b^2 x^4\right )+560 b x^2 \left (1+b^2 x^4\right )^{7/2} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {9}{2},\frac {7}{4},-b^2 x^4\right )\right )}{1680 \left (-1-b^2 x^4\right )^{7/2}} \] Input:

Integrate[(1 + b*x^2)/(-1 - b^2*x^4)^(9/2),x]
 

Output:

-1/1680*(x*(1095 + 2379*b^2*x^4 + 1989*b^4*x^8 + 585*b^6*x^12 + 585*(1 + b 
^2*x^4)^(7/2)*Hypergeometric2F1[1/4, 1/2, 5/4, -(b^2*x^4)] + 560*b*x^2*(1 
+ b^2*x^4)^(7/2)*Hypergeometric2F1[3/4, 9/2, 7/4, -(b^2*x^4)]))/(-1 - b^2* 
x^4)^(7/2)
 

Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 285, normalized size of antiderivative = 1.06, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {1493, 25, 1493, 25, 1493, 27, 1493, 25, 1512, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {b x^2+1}{\left (-b^2 x^4-1\right )^{9/2}} \, dx\)

\(\Big \downarrow \) 1493

\(\displaystyle \frac {1}{14} \int -\frac {11 b x^2+13}{\left (-b^2 x^4-1\right )^{7/2}}dx-\frac {x \left (b x^2+1\right )}{14 \left (-b^2 x^4-1\right )^{7/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {1}{14} \int \frac {11 b x^2+13}{\left (-b^2 x^4-1\right )^{7/2}}dx-\frac {x \left (b x^2+1\right )}{14 \left (-b^2 x^4-1\right )^{7/2}}\)

\(\Big \downarrow \) 1493

\(\displaystyle \frac {1}{14} \left (\frac {x \left (11 b x^2+13\right )}{10 \left (-b^2 x^4-1\right )^{5/2}}-\frac {1}{10} \int -\frac {77 b x^2+117}{\left (-b^2 x^4-1\right )^{5/2}}dx\right )-\frac {x \left (b x^2+1\right )}{14 \left (-b^2 x^4-1\right )^{7/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{14} \left (\frac {1}{10} \int \frac {77 b x^2+117}{\left (-b^2 x^4-1\right )^{5/2}}dx+\frac {x \left (11 b x^2+13\right )}{10 \left (-b^2 x^4-1\right )^{5/2}}\right )-\frac {x \left (b x^2+1\right )}{14 \left (-b^2 x^4-1\right )^{7/2}}\)

\(\Big \downarrow \) 1493

\(\displaystyle \frac {1}{14} \left (\frac {1}{10} \left (\frac {1}{6} \int -\frac {3 \left (77 b x^2+195\right )}{\left (-b^2 x^4-1\right )^{3/2}}dx-\frac {x \left (77 b x^2+117\right )}{6 \left (-b^2 x^4-1\right )^{3/2}}\right )+\frac {x \left (11 b x^2+13\right )}{10 \left (-b^2 x^4-1\right )^{5/2}}\right )-\frac {x \left (b x^2+1\right )}{14 \left (-b^2 x^4-1\right )^{7/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{14} \left (\frac {1}{10} \left (-\frac {1}{2} \int \frac {77 b x^2+195}{\left (-b^2 x^4-1\right )^{3/2}}dx-\frac {x \left (77 b x^2+117\right )}{6 \left (-b^2 x^4-1\right )^{3/2}}\right )+\frac {x \left (11 b x^2+13\right )}{10 \left (-b^2 x^4-1\right )^{5/2}}\right )-\frac {x \left (b x^2+1\right )}{14 \left (-b^2 x^4-1\right )^{7/2}}\)

\(\Big \downarrow \) 1493

\(\displaystyle \frac {1}{14} \left (\frac {1}{10} \left (\frac {1}{2} \left (\frac {x \left (77 b x^2+195\right )}{2 \sqrt {-b^2 x^4-1}}-\frac {1}{2} \int -\frac {195-77 b x^2}{\sqrt {-b^2 x^4-1}}dx\right )-\frac {x \left (77 b x^2+117\right )}{6 \left (-b^2 x^4-1\right )^{3/2}}\right )+\frac {x \left (11 b x^2+13\right )}{10 \left (-b^2 x^4-1\right )^{5/2}}\right )-\frac {x \left (b x^2+1\right )}{14 \left (-b^2 x^4-1\right )^{7/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{14} \left (\frac {1}{10} \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {195-77 b x^2}{\sqrt {-b^2 x^4-1}}dx+\frac {x \left (77 b x^2+195\right )}{2 \sqrt {-b^2 x^4-1}}\right )-\frac {x \left (77 b x^2+117\right )}{6 \left (-b^2 x^4-1\right )^{3/2}}\right )+\frac {x \left (11 b x^2+13\right )}{10 \left (-b^2 x^4-1\right )^{5/2}}\right )-\frac {x \left (b x^2+1\right )}{14 \left (-b^2 x^4-1\right )^{7/2}}\)

\(\Big \downarrow \) 1512

\(\displaystyle \frac {1}{14} \left (\frac {1}{10} \left (\frac {1}{2} \left (\frac {1}{2} \left (118 \int \frac {1}{\sqrt {-b^2 x^4-1}}dx+77 \int \frac {1-b x^2}{\sqrt {-b^2 x^4-1}}dx\right )+\frac {x \left (77 b x^2+195\right )}{2 \sqrt {-b^2 x^4-1}}\right )-\frac {x \left (77 b x^2+117\right )}{6 \left (-b^2 x^4-1\right )^{3/2}}\right )+\frac {x \left (11 b x^2+13\right )}{10 \left (-b^2 x^4-1\right )^{5/2}}\right )-\frac {x \left (b x^2+1\right )}{14 \left (-b^2 x^4-1\right )^{7/2}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {1}{14} \left (\frac {1}{10} \left (\frac {1}{2} \left (\frac {1}{2} \left (77 \int \frac {1-b x^2}{\sqrt {-b^2 x^4-1}}dx+\frac {59 \left (b x^2+1\right ) \sqrt {\frac {b^2 x^4+1}{\left (b x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\sqrt {b} x\right ),\frac {1}{2}\right )}{\sqrt {b} \sqrt {-b^2 x^4-1}}\right )+\frac {x \left (77 b x^2+195\right )}{2 \sqrt {-b^2 x^4-1}}\right )-\frac {x \left (77 b x^2+117\right )}{6 \left (-b^2 x^4-1\right )^{3/2}}\right )+\frac {x \left (11 b x^2+13\right )}{10 \left (-b^2 x^4-1\right )^{5/2}}\right )-\frac {x \left (b x^2+1\right )}{14 \left (-b^2 x^4-1\right )^{7/2}}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {1}{14} \left (\frac {1}{10} \left (\frac {1}{2} \left (\frac {1}{2} \left (\frac {59 \left (b x^2+1\right ) \sqrt {\frac {b^2 x^4+1}{\left (b x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\sqrt {b} x\right ),\frac {1}{2}\right )}{\sqrt {b} \sqrt {-b^2 x^4-1}}+77 \left (\frac {\left (b x^2+1\right ) \sqrt {\frac {b^2 x^4+1}{\left (b x^2+1\right )^2}} E\left (2 \arctan \left (\sqrt {b} x\right )|\frac {1}{2}\right )}{\sqrt {b} \sqrt {-b^2 x^4-1}}+\frac {x \sqrt {-b^2 x^4-1}}{b x^2+1}\right )\right )+\frac {x \left (77 b x^2+195\right )}{2 \sqrt {-b^2 x^4-1}}\right )-\frac {x \left (77 b x^2+117\right )}{6 \left (-b^2 x^4-1\right )^{3/2}}\right )+\frac {x \left (11 b x^2+13\right )}{10 \left (-b^2 x^4-1\right )^{5/2}}\right )-\frac {x \left (b x^2+1\right )}{14 \left (-b^2 x^4-1\right )^{7/2}}\)

Input:

Int[(1 + b*x^2)/(-1 - b^2*x^4)^(9/2),x]
 

Output:

-1/14*(x*(1 + b*x^2))/(-1 - b^2*x^4)^(7/2) + ((x*(13 + 11*b*x^2))/(10*(-1 
- b^2*x^4)^(5/2)) + (-1/6*(x*(117 + 77*b*x^2))/(-1 - b^2*x^4)^(3/2) + ((x* 
(195 + 77*b*x^2))/(2*Sqrt[-1 - b^2*x^4]) + (77*((x*Sqrt[-1 - b^2*x^4])/(1 
+ b*x^2) + ((1 + b*x^2)*Sqrt[(1 + b^2*x^4)/(1 + b*x^2)^2]*EllipticE[2*ArcT 
an[Sqrt[b]*x], 1/2])/(Sqrt[b]*Sqrt[-1 - b^2*x^4])) + (59*(1 + b*x^2)*Sqrt[ 
(1 + b^2*x^4)/(1 + b*x^2)^2]*EllipticF[2*ArcTan[Sqrt[b]*x], 1/2])/(Sqrt[b] 
*Sqrt[-1 - b^2*x^4]))/2)/2)/10)/14
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1493
Int[((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x 
)*(d + e*x^2)*((a + c*x^4)^(p + 1)/(4*a*(p + 1))), x] + Simp[1/(4*a*(p + 1) 
)   Int[Simp[d*(4*p + 5) + e*(4*p + 7)*x^2, x]*(a + c*x^4)^(p + 1), x], x] 
/; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && Integer 
Q[2*p]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 1512
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + c*x^4], x], x] - Simp[e/q 
 Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a, c 
, d, e}, x] && PosQ[c/a]
 
Maple [A] (warning: unable to verify)

Time = 1.08 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.33

method result size
meijerg \(\frac {\operatorname {signum}\left (b^{2} x^{4}+1\right )^{\frac {9}{2}} x \operatorname {hypergeom}\left (\left [\frac {1}{4}, \frac {9}{2}\right ], \left [\frac {5}{4}\right ], -b^{2} x^{4}\right )}{{\left (-\operatorname {signum}\left (b^{2} x^{4}+1\right )\right )}^{\frac {9}{2}}}+\frac {b \operatorname {signum}\left (b^{2} x^{4}+1\right )^{\frac {9}{2}} x^{3} \operatorname {hypergeom}\left (\left [\frac {3}{4}, \frac {9}{2}\right ], \left [\frac {7}{4}\right ], -b^{2} x^{4}\right )}{3 {\left (-\operatorname {signum}\left (b^{2} x^{4}+1\right )\right )}^{\frac {9}{2}}}\) \(90\)
elliptic \(\frac {\left (-\frac {x^{3}}{14 b^{7}}-\frac {x}{14 b^{8}}\right ) \sqrt {-b^{2} x^{4}-1}}{\left (x^{4}+\frac {1}{b^{2}}\right )^{4}}+\frac {\left (-\frac {11 x^{3}}{140 b^{5}}-\frac {13 x}{140 b^{6}}\right ) \sqrt {-b^{2} x^{4}-1}}{\left (x^{4}+\frac {1}{b^{2}}\right )^{3}}+\frac {\left (-\frac {11 x^{3}}{120 b^{3}}-\frac {39 x}{280 b^{4}}\right ) \sqrt {-b^{2} x^{4}-1}}{\left (x^{4}+\frac {1}{b^{2}}\right )^{2}}+\frac {2 b^{2} \left (\frac {11 x^{3}}{160 b}+\frac {39 x}{224 b^{2}}\right )}{\sqrt {-\left (x^{4}+\frac {1}{b^{2}}\right ) b^{2}}}+\frac {39 \sqrt {i b \,x^{2}+1}\, \sqrt {-i b \,x^{2}+1}\, \operatorname {EllipticF}\left (x \sqrt {-i b}, i\right )}{112 \sqrt {-i b}\, \sqrt {-b^{2} x^{4}-1}}+\frac {11 i \sqrt {i b \,x^{2}+1}\, \sqrt {-i b \,x^{2}+1}\, \left (\operatorname {EllipticF}\left (x \sqrt {-i b}, i\right )-\operatorname {EllipticE}\left (x \sqrt {-i b}, i\right )\right )}{80 \sqrt {-i b}\, \sqrt {-b^{2} x^{4}-1}}\) \(268\)
default \(-\frac {x \sqrt {-b^{2} x^{4}-1}}{14 b^{8} \left (x^{4}+\frac {1}{b^{2}}\right )^{4}}-\frac {13 x \sqrt {-b^{2} x^{4}-1}}{140 b^{6} \left (x^{4}+\frac {1}{b^{2}}\right )^{3}}-\frac {39 x \sqrt {-b^{2} x^{4}-1}}{280 b^{4} \left (x^{4}+\frac {1}{b^{2}}\right )^{2}}+\frac {39 x}{112 \sqrt {-\left (x^{4}+\frac {1}{b^{2}}\right ) b^{2}}}+\frac {39 \sqrt {i b \,x^{2}+1}\, \sqrt {-i b \,x^{2}+1}\, \operatorname {EllipticF}\left (x \sqrt {-i b}, i\right )}{112 \sqrt {-i b}\, \sqrt {-b^{2} x^{4}-1}}+b \left (-\frac {x^{3} \sqrt {-b^{2} x^{4}-1}}{14 b^{8} \left (x^{4}+\frac {1}{b^{2}}\right )^{4}}-\frac {11 x^{3} \sqrt {-b^{2} x^{4}-1}}{140 b^{6} \left (x^{4}+\frac {1}{b^{2}}\right )^{3}}-\frac {11 x^{3} \sqrt {-b^{2} x^{4}-1}}{120 b^{4} \left (x^{4}+\frac {1}{b^{2}}\right )^{2}}+\frac {11 x^{3}}{80 \sqrt {-\left (x^{4}+\frac {1}{b^{2}}\right ) b^{2}}}+\frac {11 i \sqrt {i b \,x^{2}+1}\, \sqrt {-i b \,x^{2}+1}\, \left (\operatorname {EllipticF}\left (x \sqrt {-i b}, i\right )-\operatorname {EllipticE}\left (x \sqrt {-i b}, i\right )\right )}{80 \sqrt {-i b}\, \sqrt {-b^{2} x^{4}-1}\, b}\right )\) \(333\)

Input:

int((b*x^2+1)/(-b^2*x^4-1)^(9/2),x,method=_RETURNVERBOSE)
 

Output:

1/(-signum(b^2*x^4+1))^(9/2)*signum(b^2*x^4+1)^(9/2)*x*hypergeom([1/4,9/2] 
,[5/4],-b^2*x^4)+1/3*b/(-signum(b^2*x^4+1))^(9/2)*signum(b^2*x^4+1)^(9/2)* 
x^3*hypergeom([3/4,9/2],[7/4],-b^2*x^4)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.07 (sec) , antiderivative size = 263, normalized size of antiderivative = 0.97 \[ \int \frac {1+b x^2}{\left (-1-b^2 x^4\right )^{9/2}} \, dx=-\frac {231 \, {\left (i \, b^{9} x^{16} + 4 i \, b^{7} x^{12} + 6 i \, b^{5} x^{8} + 4 i \, b^{3} x^{4} + i \, b\right )} \left (-b^{2}\right )^{\frac {3}{4}} E(\arcsin \left (\left (-b^{2}\right )^{\frac {1}{4}} x\right )\,|\,-1) + 3 \, {\left (-i \, {\left (77 \, b^{9} + 195 \, b^{8}\right )} x^{16} - 4 i \, {\left (77 \, b^{7} + 195 \, b^{6}\right )} x^{12} - 6 i \, {\left (77 \, b^{5} + 195 \, b^{4}\right )} x^{8} - 4 i \, {\left (77 \, b^{3} + 195 \, b^{2}\right )} x^{4} - 77 i \, b - 195 i\right )} \left (-b^{2}\right )^{\frac {3}{4}} F(\arcsin \left (\left (-b^{2}\right )^{\frac {1}{4}} x\right )\,|\,-1) + {\left (231 \, b^{9} x^{15} + 585 \, b^{8} x^{13} + 847 \, b^{7} x^{11} + 1989 \, b^{6} x^{9} + 1133 \, b^{5} x^{7} + 2379 \, b^{4} x^{5} + 637 \, b^{3} x^{3} + 1095 \, b^{2} x\right )} \sqrt {-b^{2} x^{4} - 1}}{1680 \, {\left (b^{10} x^{16} + 4 \, b^{8} x^{12} + 6 \, b^{6} x^{8} + 4 \, b^{4} x^{4} + b^{2}\right )}} \] Input:

integrate((b*x^2+1)/(-b^2*x^4-1)^(9/2),x, algorithm="fricas")
 

Output:

-1/1680*(231*(I*b^9*x^16 + 4*I*b^7*x^12 + 6*I*b^5*x^8 + 4*I*b^3*x^4 + I*b) 
*(-b^2)^(3/4)*elliptic_e(arcsin((-b^2)^(1/4)*x), -1) + 3*(-I*(77*b^9 + 195 
*b^8)*x^16 - 4*I*(77*b^7 + 195*b^6)*x^12 - 6*I*(77*b^5 + 195*b^4)*x^8 - 4* 
I*(77*b^3 + 195*b^2)*x^4 - 77*I*b - 195*I)*(-b^2)^(3/4)*elliptic_f(arcsin( 
(-b^2)^(1/4)*x), -1) + (231*b^9*x^15 + 585*b^8*x^13 + 847*b^7*x^11 + 1989* 
b^6*x^9 + 1133*b^5*x^7 + 2379*b^4*x^5 + 637*b^3*x^3 + 1095*b^2*x)*sqrt(-b^ 
2*x^4 - 1))/(b^10*x^16 + 4*b^8*x^12 + 6*b^6*x^8 + 4*b^4*x^4 + b^2)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 89.76 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.26 \[ \int \frac {1+b x^2}{\left (-1-b^2 x^4\right )^{9/2}} \, dx=- \frac {i b x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{4}, \frac {9}{2} \\ \frac {7}{4} \end {matrix}\middle | {b^{2} x^{4} e^{i \pi }} \right )}}{4 \Gamma \left (\frac {7}{4}\right )} - \frac {i x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {9}{2} \\ \frac {5}{4} \end {matrix}\middle | {b^{2} x^{4} e^{i \pi }} \right )}}{4 \Gamma \left (\frac {5}{4}\right )} \] Input:

integrate((b*x**2+1)/(-b**2*x**4-1)**(9/2),x)
 

Output:

-I*b*x**3*gamma(3/4)*hyper((3/4, 9/2), (7/4,), b**2*x**4*exp_polar(I*pi))/ 
(4*gamma(7/4)) - I*x*gamma(1/4)*hyper((1/4, 9/2), (5/4,), b**2*x**4*exp_po 
lar(I*pi))/(4*gamma(5/4))
 

Maxima [F]

\[ \int \frac {1+b x^2}{\left (-1-b^2 x^4\right )^{9/2}} \, dx=\int { \frac {b x^{2} + 1}{{\left (-b^{2} x^{4} - 1\right )}^{\frac {9}{2}}} \,d x } \] Input:

integrate((b*x^2+1)/(-b^2*x^4-1)^(9/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

integrate((b*x^2 + 1)/(-b^2*x^4 - 1)^(9/2), x)
 

Giac [F]

\[ \int \frac {1+b x^2}{\left (-1-b^2 x^4\right )^{9/2}} \, dx=\int { \frac {b x^{2} + 1}{{\left (-b^{2} x^{4} - 1\right )}^{\frac {9}{2}}} \,d x } \] Input:

integrate((b*x^2+1)/(-b^2*x^4-1)^(9/2),x, algorithm="giac")
 

Output:

integrate((b*x^2 + 1)/(-b^2*x^4 - 1)^(9/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1+b x^2}{\left (-1-b^2 x^4\right )^{9/2}} \, dx=\int \frac {b\,x^2+1}{{\left (-b^2\,x^4-1\right )}^{9/2}} \,d x \] Input:

int((b*x^2 + 1)/(- b^2*x^4 - 1)^(9/2),x)
 

Output:

int((b*x^2 + 1)/(- b^2*x^4 - 1)^(9/2), x)
 

Reduce [F]

\[ \int \frac {1+b x^2}{\left (-1-b^2 x^4\right )^{9/2}} \, dx=-i \left (\int \frac {\sqrt {b^{2} x^{4}+1}}{b^{10} x^{20}+5 b^{8} x^{16}+10 b^{6} x^{12}+10 b^{4} x^{8}+5 b^{2} x^{4}+1}d x +\left (\int \frac {\sqrt {b^{2} x^{4}+1}\, x^{2}}{b^{10} x^{20}+5 b^{8} x^{16}+10 b^{6} x^{12}+10 b^{4} x^{8}+5 b^{2} x^{4}+1}d x \right ) b \right ) \] Input:

int((b*x^2+1)/(-b^2*x^4-1)^(9/2),x)
 

Output:

 - i*(int(sqrt(b**2*x**4 + 1)/(b**10*x**20 + 5*b**8*x**16 + 10*b**6*x**12 
+ 10*b**4*x**8 + 5*b**2*x**4 + 1),x) + int((sqrt(b**2*x**4 + 1)*x**2)/(b** 
10*x**20 + 5*b**8*x**16 + 10*b**6*x**12 + 10*b**4*x**8 + 5*b**2*x**4 + 1), 
x)*b)