\(\int \frac {d+e x^2}{(a+c x^4)^2} \, dx\) [320]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 207 \[ \int \frac {d+e x^2}{\left (a+c x^4\right )^2} \, dx=\frac {x \left (d+e x^2\right )}{4 a \left (a+c x^4\right )}-\frac {\left (3 \sqrt {c} d+\sqrt {a} e\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} c^{3/4}}+\frac {\left (3 \sqrt {c} d+\sqrt {a} e\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} c^{3/4}}+\frac {\left (3 \sqrt {c} d-\sqrt {a} e\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x}{\sqrt {a}+\sqrt {c} x^2}\right )}{8 \sqrt {2} a^{7/4} c^{3/4}} \] Output:

1/4*x*(e*x^2+d)/a/(c*x^4+a)+1/16*(3*c^(1/2)*d+a^(1/2)*e)*arctan(-1+2^(1/2) 
*c^(1/4)*x/a^(1/4))*2^(1/2)/a^(7/4)/c^(3/4)+1/16*(3*c^(1/2)*d+a^(1/2)*e)*a 
rctan(1+2^(1/2)*c^(1/4)*x/a^(1/4))*2^(1/2)/a^(7/4)/c^(3/4)+1/16*(3*c^(1/2) 
*d-a^(1/2)*e)*arctanh(2^(1/2)*a^(1/4)*c^(1/4)*x/(a^(1/2)+c^(1/2)*x^2))*2^( 
1/2)/a^(7/4)/c^(3/4)
 

Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 267, normalized size of antiderivative = 1.29 \[ \int \frac {d+e x^2}{\left (a+c x^4\right )^2} \, dx=\frac {\frac {8 a x \left (d+e x^2\right )}{a+c x^4}-\frac {2 \sqrt {2} \sqrt [4]{a} \left (3 \sqrt {c} d+\sqrt {a} e\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{c^{3/4}}+\frac {2 \sqrt {2} \sqrt [4]{a} \left (3 \sqrt {c} d+\sqrt {a} e\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{c^{3/4}}+\frac {\sqrt {2} \left (-3 \sqrt [4]{a} \sqrt {c} d+a^{3/4} e\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{c^{3/4}}+\frac {\sqrt {2} \left (3 \sqrt [4]{a} \sqrt {c} d-a^{3/4} e\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{c^{3/4}}}{32 a^2} \] Input:

Integrate[(d + e*x^2)/(a + c*x^4)^2,x]
 

Output:

((8*a*x*(d + e*x^2))/(a + c*x^4) - (2*Sqrt[2]*a^(1/4)*(3*Sqrt[c]*d + Sqrt[ 
a]*e)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/c^(3/4) + (2*Sqrt[2]*a^(1/4 
)*(3*Sqrt[c]*d + Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/c^(3/ 
4) + (Sqrt[2]*(-3*a^(1/4)*Sqrt[c]*d + a^(3/4)*e)*Log[Sqrt[a] - Sqrt[2]*a^( 
1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c^(3/4) + (Sqrt[2]*(3*a^(1/4)*Sqrt[c]*d - a 
^(3/4)*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c^(3/4)) 
/(32*a^2)
 

Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.28, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.647, Rules used = {1493, 25, 1482, 27, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x^2}{\left (a+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 1493

\(\displaystyle \frac {x \left (d+e x^2\right )}{4 a \left (a+c x^4\right )}-\frac {\int -\frac {e x^2+3 d}{c x^4+a}dx}{4 a}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {e x^2+3 d}{c x^4+a}dx}{4 a}+\frac {x \left (d+e x^2\right )}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {\frac {\left (\frac {3 \sqrt {c} d}{\sqrt {a}}-e\right ) \int \frac {\sqrt {c} \left (\sqrt {a}-\sqrt {c} x^2\right )}{c x^4+a}dx}{2 c}+\frac {\left (\frac {3 \sqrt {c} d}{\sqrt {a}}+e\right ) \int \frac {\sqrt {c} \left (\sqrt {c} x^2+\sqrt {a}\right )}{c x^4+a}dx}{2 c}}{4 a}+\frac {x \left (d+e x^2\right )}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\left (\frac {3 \sqrt {c} d}{\sqrt {a}}-e\right ) \int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}+\frac {\left (\frac {3 \sqrt {c} d}{\sqrt {a}}+e\right ) \int \frac {\sqrt {c} x^2+\sqrt {a}}{c x^4+a}dx}{2 \sqrt {c}}}{4 a}+\frac {x \left (d+e x^2\right )}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\frac {\left (\frac {3 \sqrt {c} d}{\sqrt {a}}+e\right ) \left (\frac {\int \frac {1}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {c}}+\frac {\int \frac {1}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {c}}\right )}{2 \sqrt {c}}+\frac {\left (\frac {3 \sqrt {c} d}{\sqrt {a}}-e\right ) \int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}}{4 a}+\frac {x \left (d+e x^2\right )}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {\left (\frac {3 \sqrt {c} d}{\sqrt {a}}-e\right ) \int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}+\frac {\left (\frac {3 \sqrt {c} d}{\sqrt {a}}+e\right ) \left (\frac {\int \frac {1}{-\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )^2-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\int \frac {1}{-\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )^2-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}\right )}{2 \sqrt {c}}}{4 a}+\frac {x \left (d+e x^2\right )}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {\left (\frac {3 \sqrt {c} d}{\sqrt {a}}-e\right ) \int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {c}}+\frac {\left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}\right ) \left (\frac {3 \sqrt {c} d}{\sqrt {a}}+e\right )}{2 \sqrt {c}}}{4 a}+\frac {x \left (d+e x^2\right )}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\frac {\left (\frac {3 \sqrt {c} d}{\sqrt {a}}-e\right ) \left (-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{\sqrt [4]{c} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}\right )}{\sqrt [4]{c} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}\right )}{2 \sqrt {c}}+\frac {\left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}\right ) \left (\frac {3 \sqrt {c} d}{\sqrt {a}}+e\right )}{2 \sqrt {c}}}{4 a}+\frac {x \left (d+e x^2\right )}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\left (\frac {3 \sqrt {c} d}{\sqrt {a}}-e\right ) \left (\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{\sqrt [4]{c} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}\right )}{\sqrt [4]{c} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}\right )}{2 \sqrt {c}}+\frac {\left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}\right ) \left (\frac {3 \sqrt {c} d}{\sqrt {a}}+e\right )}{2 \sqrt {c}}}{4 a}+\frac {x \left (d+e x^2\right )}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\left (\frac {3 \sqrt {c} d}{\sqrt {a}}-e\right ) \left (\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt [4]{a} \sqrt {c}}\right )}{2 \sqrt {c}}+\frac {\left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}\right ) \left (\frac {3 \sqrt {c} d}{\sqrt {a}}+e\right )}{2 \sqrt {c}}}{4 a}+\frac {x \left (d+e x^2\right )}{4 a \left (a+c x^4\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {\left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}\right ) \left (\frac {3 \sqrt {c} d}{\sqrt {a}}+e\right )}{2 \sqrt {c}}+\frac {\left (\frac {3 \sqrt {c} d}{\sqrt {a}}-e\right ) \left (\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}\right )}{2 \sqrt {c}}}{4 a}+\frac {x \left (d+e x^2\right )}{4 a \left (a+c x^4\right )}\)

Input:

Int[(d + e*x^2)/(a + c*x^4)^2,x]
 

Output:

(x*(d + e*x^2))/(4*a*(a + c*x^4)) + ((((3*Sqrt[c]*d)/Sqrt[a] + e)*(-(ArcTa 
n[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)]/(Sqrt[2]*a^(1/4)*c^(1/4))) + ArcTan[1 + 
 (Sqrt[2]*c^(1/4)*x)/a^(1/4)]/(Sqrt[2]*a^(1/4)*c^(1/4))))/(2*Sqrt[c]) + (( 
(3*Sqrt[c]*d)/Sqrt[a] - e)*(-1/2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + 
 Sqrt[c]*x^2]/(Sqrt[2]*a^(1/4)*c^(1/4)) + Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^ 
(1/4)*x + Sqrt[c]*x^2]/(2*Sqrt[2]*a^(1/4)*c^(1/4))))/(2*Sqrt[c]))/(4*a)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 1493
Int[((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x 
)*(d + e*x^2)*((a + c*x^4)^(p + 1)/(4*a*(p + 1))), x] + Simp[1/(4*a*(p + 1) 
)   Int[Simp[d*(4*p + 5) + e*(4*p + 7)*x^2, x]*(a + c*x^4)^(p + 1), x], x] 
/; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && Integer 
Q[2*p]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.10 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.32

method result size
risch \(\frac {\frac {e \,x^{3}}{4 a}+\frac {d x}{4 a}}{c \,x^{4}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+a \right )}{\sum }\frac {\left (\textit {\_R}^{2} e +3 d \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{16 a c}\) \(67\)
default \(d \left (\frac {x}{4 a \left (c \,x^{4}+a \right )}+\frac {3 \left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a^{2}}\right )+e \left (\frac {x^{3}}{4 a \left (c \,x^{4}+a \right )}+\frac {\sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a c \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )\) \(245\)

Input:

int((e*x^2+d)/(c*x^4+a)^2,x,method=_RETURNVERBOSE)
 

Output:

(1/4/a*e*x^3+1/4*d/a*x)/(c*x^4+a)+1/16/a/c*sum((_R^2*e+3*d)/_R^3*ln(x-_R), 
_R=RootOf(_Z^4*c+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 873 vs. \(2 (146) = 292\).

Time = 0.09 (sec) , antiderivative size = 873, normalized size of antiderivative = 4.22 \[ \int \frac {d+e x^2}{\left (a+c x^4\right )^2} \, dx =\text {Too large to display} \] Input:

integrate((e*x^2+d)/(c*x^4+a)^2,x, algorithm="fricas")
 

Output:

1/16*(4*e*x^3 - (a*c*x^4 + a^2)*sqrt(-(a^3*c*sqrt(-(81*c^2*d^4 - 18*a*c*d^ 
2*e^2 + a^2*e^4)/(a^7*c^3)) + 6*d*e)/(a^3*c))*log(-(81*c^2*d^4 - a^2*e^4)* 
x + (a^6*c^2*e*sqrt(-(81*c^2*d^4 - 18*a*c*d^2*e^2 + a^2*e^4)/(a^7*c^3)) + 
27*a^2*c^2*d^3 - 3*a^3*c*d*e^2)*sqrt(-(a^3*c*sqrt(-(81*c^2*d^4 - 18*a*c*d^ 
2*e^2 + a^2*e^4)/(a^7*c^3)) + 6*d*e)/(a^3*c))) + (a*c*x^4 + a^2)*sqrt(-(a^ 
3*c*sqrt(-(81*c^2*d^4 - 18*a*c*d^2*e^2 + a^2*e^4)/(a^7*c^3)) + 6*d*e)/(a^3 
*c))*log(-(81*c^2*d^4 - a^2*e^4)*x - (a^6*c^2*e*sqrt(-(81*c^2*d^4 - 18*a*c 
*d^2*e^2 + a^2*e^4)/(a^7*c^3)) + 27*a^2*c^2*d^3 - 3*a^3*c*d*e^2)*sqrt(-(a^ 
3*c*sqrt(-(81*c^2*d^4 - 18*a*c*d^2*e^2 + a^2*e^4)/(a^7*c^3)) + 6*d*e)/(a^3 
*c))) + (a*c*x^4 + a^2)*sqrt((a^3*c*sqrt(-(81*c^2*d^4 - 18*a*c*d^2*e^2 + a 
^2*e^4)/(a^7*c^3)) - 6*d*e)/(a^3*c))*log(-(81*c^2*d^4 - a^2*e^4)*x + (a^6* 
c^2*e*sqrt(-(81*c^2*d^4 - 18*a*c*d^2*e^2 + a^2*e^4)/(a^7*c^3)) - 27*a^2*c^ 
2*d^3 + 3*a^3*c*d*e^2)*sqrt((a^3*c*sqrt(-(81*c^2*d^4 - 18*a*c*d^2*e^2 + a^ 
2*e^4)/(a^7*c^3)) - 6*d*e)/(a^3*c))) - (a*c*x^4 + a^2)*sqrt((a^3*c*sqrt(-( 
81*c^2*d^4 - 18*a*c*d^2*e^2 + a^2*e^4)/(a^7*c^3)) - 6*d*e)/(a^3*c))*log(-( 
81*c^2*d^4 - a^2*e^4)*x - (a^6*c^2*e*sqrt(-(81*c^2*d^4 - 18*a*c*d^2*e^2 + 
a^2*e^4)/(a^7*c^3)) - 27*a^2*c^2*d^3 + 3*a^3*c*d*e^2)*sqrt((a^3*c*sqrt(-(8 
1*c^2*d^4 - 18*a*c*d^2*e^2 + a^2*e^4)/(a^7*c^3)) - 6*d*e)/(a^3*c))) + 4*d* 
x)/(a*c*x^4 + a^2)
 

Sympy [A] (verification not implemented)

Time = 0.46 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.66 \[ \int \frac {d+e x^2}{\left (a+c x^4\right )^2} \, dx=\operatorname {RootSum} {\left (65536 t^{4} a^{7} c^{3} + 3072 t^{2} a^{4} c^{2} d e + a^{2} e^{4} + 18 a c d^{2} e^{2} + 81 c^{2} d^{4}, \left ( t \mapsto t \log {\left (x + \frac {4096 t^{3} a^{6} c^{2} e + 144 t a^{3} c d e^{2} - 432 t a^{2} c^{2} d^{3}}{a^{2} e^{4} - 81 c^{2} d^{4}} \right )} \right )\right )} + \frac {d x + e x^{3}}{4 a^{2} + 4 a c x^{4}} \] Input:

integrate((e*x**2+d)/(c*x**4+a)**2,x)
 

Output:

RootSum(65536*_t**4*a**7*c**3 + 3072*_t**2*a**4*c**2*d*e + a**2*e**4 + 18* 
a*c*d**2*e**2 + 81*c**2*d**4, Lambda(_t, _t*log(x + (4096*_t**3*a**6*c**2* 
e + 144*_t*a**3*c*d*e**2 - 432*_t*a**2*c**2*d**3)/(a**2*e**4 - 81*c**2*d** 
4)))) + (d*x + e*x**3)/(4*a**2 + 4*a*c*x**4)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.22 \[ \int \frac {d+e x^2}{\left (a+c x^4\right )^2} \, dx=\frac {e x^{3} + d x}{4 \, {\left (a c x^{4} + a^{2}\right )}} + \frac {\frac {2 \, \sqrt {2} {\left (3 \, \sqrt {c} d + \sqrt {a} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {c}} \sqrt {c}} + \frac {2 \, \sqrt {2} {\left (3 \, \sqrt {c} d + \sqrt {a} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {c}} \sqrt {c}} + \frac {\sqrt {2} {\left (3 \, \sqrt {c} d - \sqrt {a} e\right )} \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} c^{\frac {3}{4}}} - \frac {\sqrt {2} {\left (3 \, \sqrt {c} d - \sqrt {a} e\right )} \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} c^{\frac {3}{4}}}}{32 \, a} \] Input:

integrate((e*x^2+d)/(c*x^4+a)^2,x, algorithm="maxima")
 

Output:

1/4*(e*x^3 + d*x)/(a*c*x^4 + a^2) + 1/32*(2*sqrt(2)*(3*sqrt(c)*d + sqrt(a) 
*e)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x + sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a 
)*sqrt(c)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(c))*sqrt(c)) + 2*sqrt(2)*(3*sqrt(c) 
*d + sqrt(a)*e)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1/4)) 
/sqrt(sqrt(a)*sqrt(c)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(c))*sqrt(c)) + sqrt(2)* 
(3*sqrt(c)*d - sqrt(a)*e)*log(sqrt(c)*x^2 + sqrt(2)*a^(1/4)*c^(1/4)*x + sq 
rt(a))/(a^(3/4)*c^(3/4)) - sqrt(2)*(3*sqrt(c)*d - sqrt(a)*e)*log(sqrt(c)*x 
^2 - sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(3/4)))/a
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 268, normalized size of antiderivative = 1.29 \[ \int \frac {d+e x^2}{\left (a+c x^4\right )^2} \, dx=\frac {e x^{3} + d x}{4 \, {\left (c x^{4} + a\right )} a} + \frac {\sqrt {2} {\left (3 \, \left (a c^{3}\right )^{\frac {1}{4}} c^{2} d + \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{16 \, a^{2} c^{3}} + \frac {\sqrt {2} {\left (3 \, \left (a c^{3}\right )^{\frac {1}{4}} c^{2} d + \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{16 \, a^{2} c^{3}} + \frac {\sqrt {2} {\left (3 \, \left (a c^{3}\right )^{\frac {1}{4}} c^{2} d - \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{32 \, a^{2} c^{3}} - \frac {\sqrt {2} {\left (3 \, \left (a c^{3}\right )^{\frac {1}{4}} c^{2} d - \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{32 \, a^{2} c^{3}} \] Input:

integrate((e*x^2+d)/(c*x^4+a)^2,x, algorithm="giac")
 

Output:

1/4*(e*x^3 + d*x)/((c*x^4 + a)*a) + 1/16*sqrt(2)*(3*(a*c^3)^(1/4)*c^2*d + 
(a*c^3)^(3/4)*e)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4 
))/(a^2*c^3) + 1/16*sqrt(2)*(3*(a*c^3)^(1/4)*c^2*d + (a*c^3)^(3/4)*e)*arct 
an(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^2*c^3) + 1/32*s 
qrt(2)*(3*(a*c^3)^(1/4)*c^2*d - (a*c^3)^(3/4)*e)*log(x^2 + sqrt(2)*x*(a/c) 
^(1/4) + sqrt(a/c))/(a^2*c^3) - 1/32*sqrt(2)*(3*(a*c^3)^(1/4)*c^2*d - (a*c 
^3)^(3/4)*e)*log(x^2 - sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a^2*c^3)
 

Mupad [B] (verification not implemented)

Time = 0.43 (sec) , antiderivative size = 637, normalized size of antiderivative = 3.08 \[ \int \frac {d+e x^2}{\left (a+c x^4\right )^2} \, dx=\frac {\frac {e\,x^3}{4\,a}+\frac {d\,x}{4\,a}}{c\,x^4+a}-2\,\mathrm {atanh}\left (\frac {c^2\,e^2\,x\,\sqrt {\frac {e^2\,\sqrt {-a^7\,c^3}}{256\,a^6\,c^3}-\frac {9\,d^2\,\sqrt {-a^7\,c^3}}{256\,a^7\,c^2}-\frac {3\,d\,e}{128\,a^3\,c}}}{2\,\left (\frac {c\,e^3}{32\,a}-\frac {9\,c^2\,d^2\,e}{32\,a^2}-\frac {27\,c\,d^3\,\sqrt {-a^7\,c^3}}{32\,a^6}+\frac {3\,d\,e^2\,\sqrt {-a^7\,c^3}}{32\,a^5}\right )}-\frac {9\,c^3\,d^2\,x\,\sqrt {\frac {e^2\,\sqrt {-a^7\,c^3}}{256\,a^6\,c^3}-\frac {9\,d^2\,\sqrt {-a^7\,c^3}}{256\,a^7\,c^2}-\frac {3\,d\,e}{128\,a^3\,c}}}{2\,\left (\frac {c\,e^3}{32}-\frac {9\,c^2\,d^2\,e}{32\,a}-\frac {27\,c\,d^3\,\sqrt {-a^7\,c^3}}{32\,a^5}+\frac {3\,d\,e^2\,\sqrt {-a^7\,c^3}}{32\,a^4}\right )}\right )\,\sqrt {-\frac {9\,c\,d^2\,\sqrt {-a^7\,c^3}-a\,e^2\,\sqrt {-a^7\,c^3}+6\,a^4\,c^2\,d\,e}{256\,a^7\,c^3}}-2\,\mathrm {atanh}\left (\frac {c^2\,e^2\,x\,\sqrt {\frac {9\,d^2\,\sqrt {-a^7\,c^3}}{256\,a^7\,c^2}-\frac {3\,d\,e}{128\,a^3\,c}-\frac {e^2\,\sqrt {-a^7\,c^3}}{256\,a^6\,c^3}}}{2\,\left (\frac {c\,e^3}{32\,a}-\frac {9\,c^2\,d^2\,e}{32\,a^2}+\frac {27\,c\,d^3\,\sqrt {-a^7\,c^3}}{32\,a^6}-\frac {3\,d\,e^2\,\sqrt {-a^7\,c^3}}{32\,a^5}\right )}-\frac {9\,c^3\,d^2\,x\,\sqrt {\frac {9\,d^2\,\sqrt {-a^7\,c^3}}{256\,a^7\,c^2}-\frac {3\,d\,e}{128\,a^3\,c}-\frac {e^2\,\sqrt {-a^7\,c^3}}{256\,a^6\,c^3}}}{2\,\left (\frac {c\,e^3}{32}-\frac {9\,c^2\,d^2\,e}{32\,a}+\frac {27\,c\,d^3\,\sqrt {-a^7\,c^3}}{32\,a^5}-\frac {3\,d\,e^2\,\sqrt {-a^7\,c^3}}{32\,a^4}\right )}\right )\,\sqrt {-\frac {a\,e^2\,\sqrt {-a^7\,c^3}-9\,c\,d^2\,\sqrt {-a^7\,c^3}+6\,a^4\,c^2\,d\,e}{256\,a^7\,c^3}} \] Input:

int((d + e*x^2)/(a + c*x^4)^2,x)
 

Output:

((e*x^3)/(4*a) + (d*x)/(4*a))/(a + c*x^4) - 2*atanh((c^2*e^2*x*((e^2*(-a^7 
*c^3)^(1/2))/(256*a^6*c^3) - (9*d^2*(-a^7*c^3)^(1/2))/(256*a^7*c^2) - (3*d 
*e)/(128*a^3*c))^(1/2))/(2*((c*e^3)/(32*a) - (9*c^2*d^2*e)/(32*a^2) - (27* 
c*d^3*(-a^7*c^3)^(1/2))/(32*a^6) + (3*d*e^2*(-a^7*c^3)^(1/2))/(32*a^5))) - 
 (9*c^3*d^2*x*((e^2*(-a^7*c^3)^(1/2))/(256*a^6*c^3) - (9*d^2*(-a^7*c^3)^(1 
/2))/(256*a^7*c^2) - (3*d*e)/(128*a^3*c))^(1/2))/(2*((c*e^3)/32 - (9*c^2*d 
^2*e)/(32*a) - (27*c*d^3*(-a^7*c^3)^(1/2))/(32*a^5) + (3*d*e^2*(-a^7*c^3)^ 
(1/2))/(32*a^4))))*(-(9*c*d^2*(-a^7*c^3)^(1/2) - a*e^2*(-a^7*c^3)^(1/2) + 
6*a^4*c^2*d*e)/(256*a^7*c^3))^(1/2) - 2*atanh((c^2*e^2*x*((9*d^2*(-a^7*c^3 
)^(1/2))/(256*a^7*c^2) - (3*d*e)/(128*a^3*c) - (e^2*(-a^7*c^3)^(1/2))/(256 
*a^6*c^3))^(1/2))/(2*((c*e^3)/(32*a) - (9*c^2*d^2*e)/(32*a^2) + (27*c*d^3* 
(-a^7*c^3)^(1/2))/(32*a^6) - (3*d*e^2*(-a^7*c^3)^(1/2))/(32*a^5))) - (9*c^ 
3*d^2*x*((9*d^2*(-a^7*c^3)^(1/2))/(256*a^7*c^2) - (3*d*e)/(128*a^3*c) - (e 
^2*(-a^7*c^3)^(1/2))/(256*a^6*c^3))^(1/2))/(2*((c*e^3)/32 - (9*c^2*d^2*e)/ 
(32*a) + (27*c*d^3*(-a^7*c^3)^(1/2))/(32*a^5) - (3*d*e^2*(-a^7*c^3)^(1/2)) 
/(32*a^4))))*(-(a*e^2*(-a^7*c^3)^(1/2) - 9*c*d^2*(-a^7*c^3)^(1/2) + 6*a^4* 
c^2*d*e)/(256*a^7*c^3))^(1/2)
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 610, normalized size of antiderivative = 2.95 \[ \int \frac {d+e x^2}{\left (a+c x^4\right )^2} \, dx =\text {Too large to display} \] Input:

int((e*x^2+d)/(c*x^4+a)^2,x)
 

Output:

( - 2*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c 
)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a*e - 2*c**(1/4)*a**(3/4)*sqrt(2)*atan(( 
c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*c*e* 
x**4 - 6*c**(3/4)*a**(1/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqr 
t(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a*d - 6*c**(3/4)*a**(1/4)*sqrt(2)*ata 
n((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*c 
*d*x**4 + 2*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) + 2* 
sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a*e + 2*c**(1/4)*a**(3/4)*sqrt(2)* 
atan((c**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)) 
)*c*e*x**4 + 6*c**(3/4)*a**(1/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) + 
 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a*d + 6*c**(3/4)*a**(1/4)*sqrt( 
2)*atan((c**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt( 
2)))*c*d*x**4 + c**(1/4)*a**(3/4)*sqrt(2)*log( - c**(1/4)*a**(1/4)*sqrt(2) 
*x + sqrt(a) + sqrt(c)*x**2)*a*e + c**(1/4)*a**(3/4)*sqrt(2)*log( - c**(1/ 
4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*c*e*x**4 - c**(1/4)*a**(3/ 
4)*sqrt(2)*log(c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a*e - 
 c**(1/4)*a**(3/4)*sqrt(2)*log(c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqr 
t(c)*x**2)*c*e*x**4 - 3*c**(3/4)*a**(1/4)*sqrt(2)*log( - c**(1/4)*a**(1/4) 
*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a*d - 3*c**(3/4)*a**(1/4)*sqrt(2)*log 
( - c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*c*d*x**4 + 3*...