\(\int \frac {\sqrt {d^2-e^2 x^4}}{d+e x^2} \, dx\) [18]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 121 \[ \int \frac {\sqrt {d^2-e^2 x^4}}{d+e x^2} \, dx=-\frac {d^{3/2} \sqrt {1-\frac {e^2 x^4}{d^2}} E\left (\left .\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right |-1\right )}{\sqrt {e} \sqrt {d^2-e^2 x^4}}+\frac {2 d^{3/2} \sqrt {1-\frac {e^2 x^4}{d^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ),-1\right )}{\sqrt {e} \sqrt {d^2-e^2 x^4}} \] Output:

-d^(3/2)*(1-e^2*x^4/d^2)^(1/2)*EllipticE(e^(1/2)*x/d^(1/2),I)/e^(1/2)/(-e^ 
2*x^4+d^2)^(1/2)+2*d^(3/2)*(1-e^2*x^4/d^2)^(1/2)*EllipticF(e^(1/2)*x/d^(1/ 
2),I)/e^(1/2)/(-e^2*x^4+d^2)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.26 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.74 \[ \int \frac {\sqrt {d^2-e^2 x^4}}{d+e x^2} \, dx=\frac {i d \sqrt {1-\frac {e^2 x^4}{d^2}} \left (E\left (\left .i \text {arcsinh}\left (\sqrt {-\frac {e}{d}} x\right )\right |-1\right )-2 \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {e}{d}} x\right ),-1\right )\right )}{\sqrt {-\frac {e}{d}} \sqrt {d^2-e^2 x^4}} \] Input:

Integrate[Sqrt[d^2 - e^2*x^4]/(d + e*x^2),x]
 

Output:

(I*d*Sqrt[1 - (e^2*x^4)/d^2]*(EllipticE[I*ArcSinh[Sqrt[-(e/d)]*x], -1] - 2 
*EllipticF[I*ArcSinh[Sqrt[-(e/d)]*x], -1]))/(Sqrt[-(e/d)]*Sqrt[d^2 - e^2*x 
^4])
 

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.45, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {1396, 326, 289, 329, 327, 765, 762}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d^2-e^2 x^4}}{d+e x^2} \, dx\)

\(\Big \downarrow \) 1396

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \int \frac {\sqrt {d-e x^2}}{\sqrt {e x^2+d}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 326

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (2 d \int \frac {1}{\sqrt {d-e x^2} \sqrt {e x^2+d}}dx-\int \frac {\sqrt {e x^2+d}}{\sqrt {d-e x^2}}dx\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 289

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {2 d \sqrt {d^2-e^2 x^4} \int \frac {1}{\sqrt {d^2-e^2 x^4}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}-\int \frac {\sqrt {e x^2+d}}{\sqrt {d-e x^2}}dx\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 329

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {2 d \sqrt {d^2-e^2 x^4} \int \frac {1}{\sqrt {d^2-e^2 x^4}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}-\frac {d \sqrt {1-\frac {e^2 x^4}{d^2}} \int \frac {\sqrt {\frac {e x^2}{d}+1}}{\sqrt {1-\frac {e x^2}{d}}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {2 d \sqrt {d^2-e^2 x^4} \int \frac {1}{\sqrt {d^2-e^2 x^4}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}-\frac {d^{3/2} \sqrt {1-\frac {e^2 x^4}{d^2}} E\left (\left .\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right |-1\right )}{\sqrt {e} \sqrt {d-e x^2} \sqrt {d+e x^2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 765

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {2 d \sqrt {1-\frac {e^2 x^4}{d^2}} \int \frac {1}{\sqrt {1-\frac {e^2 x^4}{d^2}}}dx}{\sqrt {d-e x^2} \sqrt {d+e x^2}}-\frac {d^{3/2} \sqrt {1-\frac {e^2 x^4}{d^2}} E\left (\left .\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right |-1\right )}{\sqrt {e} \sqrt {d-e x^2} \sqrt {d+e x^2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

\(\Big \downarrow \) 762

\(\displaystyle \frac {\sqrt {d^2-e^2 x^4} \left (\frac {2 d^{3/2} \sqrt {1-\frac {e^2 x^4}{d^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ),-1\right )}{\sqrt {e} \sqrt {d-e x^2} \sqrt {d+e x^2}}-\frac {d^{3/2} \sqrt {1-\frac {e^2 x^4}{d^2}} E\left (\left .\arcsin \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )\right |-1\right )}{\sqrt {e} \sqrt {d-e x^2} \sqrt {d+e x^2}}\right )}{\sqrt {d-e x^2} \sqrt {d+e x^2}}\)

Input:

Int[Sqrt[d^2 - e^2*x^4]/(d + e*x^2),x]
 

Output:

(Sqrt[d^2 - e^2*x^4]*(-((d^(3/2)*Sqrt[1 - (e^2*x^4)/d^2]*EllipticE[ArcSin[ 
(Sqrt[e]*x)/Sqrt[d]], -1])/(Sqrt[e]*Sqrt[d - e*x^2]*Sqrt[d + e*x^2])) + (2 
*d^(3/2)*Sqrt[1 - (e^2*x^4)/d^2]*EllipticF[ArcSin[(Sqrt[e]*x)/Sqrt[d]], -1 
])/(Sqrt[e]*Sqrt[d - e*x^2]*Sqrt[d + e*x^2])))/(Sqrt[d - e*x^2]*Sqrt[d + e 
*x^2])
 

Defintions of rubi rules used

rule 289
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Sim 
p[(a + b*x^2)^FracPart[p]*((c + d*x^2)^FracPart[p]/(a*c + b*d*x^4)^FracPart 
[p])   Int[(a*c + b*d*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[b* 
c + a*d, 0] &&  !IntegerQ[p]
 

rule 326
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
b/d   Int[Sqrt[c + d*x^2]/Sqrt[a + b*x^2], x], x] - Simp[(b*c - a*d)/d   In 
t[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && 
PosQ[d/c] && NegQ[b/a]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 329
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
a*(Sqrt[1 - b^2*(x^4/a^2)]/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]))   Int[Sqrt[1 
+ b*(x^2/a)]/Sqrt[1 - b*(x^2/a)], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b 
*c + a*d, 0] &&  !(LtQ[a*c, 0] && GtQ[a*b, 0])
 

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 765
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[Sqrt[1 + b*(x^4/a)]/Sqrt 
[a + b*x^4]   Int[1/Sqrt[1 + b*(x^4/a)], x], x] /; FreeQ[{a, b}, x] && NegQ 
[b/a] &&  !GtQ[a, 0]
 

rule 1396
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x 
_Symbol] :> Simp[(a + c*x^(2*n))^FracPart[p]/((d + e*x^n)^FracPart[p]*(a/d 
+ c*(x^n/e))^FracPart[p])   Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, 
x], x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a* 
e^2, 0] &&  !IntegerQ[p] &&  !(EqQ[q, 1] && EqQ[n, 2])
 
Maple [A] (verified)

Time = 1.21 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.13

method result size
default \(\frac {d \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )}{\sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}+\frac {d \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {e}{d}}, i\right )\right )}{\sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}\) \(137\)
elliptic \(\frac {d \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )}{\sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}+\frac {d \sqrt {1-\frac {e \,x^{2}}{d}}\, \sqrt {1+\frac {e \,x^{2}}{d}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {e}{d}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {e}{d}}, i\right )\right )}{\sqrt {\frac {e}{d}}\, \sqrt {-e^{2} x^{4}+d^{2}}}\) \(137\)

Input:

int((-e^2*x^4+d^2)^(1/2)/(e*x^2+d),x,method=_RETURNVERBOSE)
 

Output:

d/(e/d)^(1/2)*(1-e*x^2/d)^(1/2)*(1+e*x^2/d)^(1/2)/(-e^2*x^4+d^2)^(1/2)*Ell 
ipticF(x*(e/d)^(1/2),I)+d/(e/d)^(1/2)*(1-e*x^2/d)^(1/2)*(1+e*x^2/d)^(1/2)/ 
(-e^2*x^4+d^2)^(1/2)*(EllipticF(x*(e/d)^(1/2),I)-EllipticE(x*(e/d)^(1/2),I 
))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.75 \[ \int \frac {\sqrt {d^2-e^2 x^4}}{d+e x^2} \, dx=\frac {\sqrt {-e^{2}} d x \sqrt {\frac {d}{e}} E(\arcsin \left (\frac {\sqrt {\frac {d}{e}}}{x}\right )\,|\,-1) - \sqrt {-e^{2}} {\left (d - e\right )} x \sqrt {\frac {d}{e}} F(\arcsin \left (\frac {\sqrt {\frac {d}{e}}}{x}\right )\,|\,-1) + \sqrt {-e^{2} x^{4} + d^{2}} e}{e^{2} x} \] Input:

integrate((-e^2*x^4+d^2)^(1/2)/(e*x^2+d),x, algorithm="fricas")
 

Output:

(sqrt(-e^2)*d*x*sqrt(d/e)*elliptic_e(arcsin(sqrt(d/e)/x), -1) - sqrt(-e^2) 
*(d - e)*x*sqrt(d/e)*elliptic_f(arcsin(sqrt(d/e)/x), -1) + sqrt(-e^2*x^4 + 
 d^2)*e)/(e^2*x)
 

Sympy [F]

\[ \int \frac {\sqrt {d^2-e^2 x^4}}{d+e x^2} \, dx=\int \frac {\sqrt {- \left (- d + e x^{2}\right ) \left (d + e x^{2}\right )}}{d + e x^{2}}\, dx \] Input:

integrate((-e**2*x**4+d**2)**(1/2)/(e*x**2+d),x)
 

Output:

Integral(sqrt(-(-d + e*x**2)*(d + e*x**2))/(d + e*x**2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {d^2-e^2 x^4}}{d+e x^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((-e^2*x^4+d^2)^(1/2)/(e*x^2+d),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F]

\[ \int \frac {\sqrt {d^2-e^2 x^4}}{d+e x^2} \, dx=\int { \frac {\sqrt {-e^{2} x^{4} + d^{2}}}{e x^{2} + d} \,d x } \] Input:

integrate((-e^2*x^4+d^2)^(1/2)/(e*x^2+d),x, algorithm="giac")
 

Output:

integrate(sqrt(-e^2*x^4 + d^2)/(e*x^2 + d), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d^2-e^2 x^4}}{d+e x^2} \, dx=\int \frac {\sqrt {d^2-e^2\,x^4}}{e\,x^2+d} \,d x \] Input:

int((d^2 - e^2*x^4)^(1/2)/(d + e*x^2),x)
 

Output:

int((d^2 - e^2*x^4)^(1/2)/(d + e*x^2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {d^2-e^2 x^4}}{d+e x^2} \, dx=\int \frac {\sqrt {-e^{2} x^{4}+d^{2}}}{e \,x^{2}+d}d x \] Input:

int((-e^2*x^4+d^2)^(1/2)/(e*x^2+d),x)
 

Output:

int(sqrt(d**2 - e**2*x**4)/(d + e*x**2),x)