\(\int \frac {d+e x^2}{\sqrt {a+c x^4}} \, dx\) [424]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 227 \[ \int \frac {d+e x^2}{\sqrt {a+c x^4}} \, dx=\frac {e x \sqrt {a+c x^4}}{\sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {\sqrt [4]{a} e \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{c^{3/4} \sqrt {a+c x^4}}+\frac {\left (\sqrt {c} d+\sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} c^{3/4} \sqrt {a+c x^4}} \] Output:

e*x*(c*x^4+a)^(1/2)/c^(1/2)/(a^(1/2)+c^(1/2)*x^2)-a^(1/4)*e*(a^(1/2)+c^(1/ 
2)*x^2)*((c*x^4+a)/(a^(1/2)+c^(1/2)*x^2)^2)^(1/2)*EllipticE(sin(2*arctan(c 
^(1/4)*x/a^(1/4))),1/2*2^(1/2))/c^(3/4)/(c*x^4+a)^(1/2)+1/2*(c^(1/2)*d+a^( 
1/2)*e)*(a^(1/2)+c^(1/2)*x^2)*((c*x^4+a)/(a^(1/2)+c^(1/2)*x^2)^2)^(1/2)*In 
verseJacobiAM(2*arctan(c^(1/4)*x/a^(1/4)),1/2*2^(1/2))/a^(1/4)/c^(3/4)/(c* 
x^4+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.01 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.34 \[ \int \frac {d+e x^2}{\sqrt {a+c x^4}} \, dx=\frac {\sqrt {1+\frac {c x^4}{a}} \left (3 d x \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {c x^4}{a}\right )+e x^3 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-\frac {c x^4}{a}\right )\right )}{3 \sqrt {a+c x^4}} \] Input:

Integrate[(d + e*x^2)/Sqrt[a + c*x^4],x]
 

Output:

(Sqrt[1 + (c*x^4)/a]*(3*d*x*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^4)/a)] 
 + e*x^3*Hypergeometric2F1[1/2, 3/4, 7/4, -((c*x^4)/a)]))/(3*Sqrt[a + c*x^ 
4])
 

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {1512, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x^2}{\sqrt {a+c x^4}} \, dx\)

\(\Big \downarrow \) 1512

\(\displaystyle \left (\frac {\sqrt {a} e}{\sqrt {c}}+d\right ) \int \frac {1}{\sqrt {c x^4+a}}dx-\frac {\sqrt {a} e \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {a} \sqrt {c x^4+a}}dx}{\sqrt {c}}\)

\(\Big \downarrow \) 27

\(\displaystyle \left (\frac {\sqrt {a} e}{\sqrt {c}}+d\right ) \int \frac {1}{\sqrt {c x^4+a}}dx-\frac {e \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+a}}dx}{\sqrt {c}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\frac {\sqrt {a} e}{\sqrt {c}}+d\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+c x^4}}-\frac {e \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+a}}dx}{\sqrt {c}}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\frac {\sqrt {a} e}{\sqrt {c}}+d\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+c x^4}}-\frac {e \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{c} \sqrt {a+c x^4}}-\frac {x \sqrt {a+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{\sqrt {c}}\)

Input:

Int[(d + e*x^2)/Sqrt[a + c*x^4],x]
 

Output:

-((e*(-((x*Sqrt[a + c*x^4])/(Sqrt[a] + Sqrt[c]*x^2)) + (a^(1/4)*(Sqrt[a] + 
 Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcT 
an[(c^(1/4)*x)/a^(1/4)], 1/2])/(c^(1/4)*Sqrt[a + c*x^4])))/Sqrt[c]) + ((d 
+ (Sqrt[a]*e)/Sqrt[c])*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + 
 Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(2*a^(1/4) 
*c^(1/4)*Sqrt[a + c*x^4])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 1512
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + c*x^4], x], x] - Simp[e/q 
 Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a, c 
, d, e}, x] && PosQ[c/a]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.68 (sec) , antiderivative size = 169, normalized size of antiderivative = 0.74

method result size
default \(\frac {d \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {i e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}\) \(169\)
elliptic \(\frac {d \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {i e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}\) \(169\)

Input:

int((e*x^2+d)/(c*x^4+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

d/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c 
^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I) 
+I*e*a^(1/2)/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+ 
I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)/c^(1/2)*(EllipticF(x*(I/a^(1/ 
2)*c^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*c^(1/2))^(1/2),I))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.39 \[ \int \frac {d+e x^2}{\sqrt {a+c x^4}} \, dx=\frac {a \sqrt {c} e x \left (-\frac {a}{c}\right )^{\frac {3}{4}} E(\arcsin \left (\frac {\left (-\frac {a}{c}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + {\left (c d - a e\right )} \sqrt {c} x \left (-\frac {a}{c}\right )^{\frac {3}{4}} F(\arcsin \left (\frac {\left (-\frac {a}{c}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + \sqrt {c x^{4} + a} a e}{a c x} \] Input:

integrate((e*x^2+d)/(c*x^4+a)^(1/2),x, algorithm="fricas")
 

Output:

(a*sqrt(c)*e*x*(-a/c)^(3/4)*elliptic_e(arcsin((-a/c)^(1/4)/x), -1) + (c*d 
- a*e)*sqrt(c)*x*(-a/c)^(3/4)*elliptic_f(arcsin((-a/c)^(1/4)/x), -1) + sqr 
t(c*x^4 + a)*a*e)/(a*c*x)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.79 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.34 \[ \int \frac {d+e x^2}{\sqrt {a+c x^4}} \, dx=\frac {d x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {5}{4}\right )} + \frac {e x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {7}{4}\right )} \] Input:

integrate((e*x**2+d)/(c*x**4+a)**(1/2),x)
 

Output:

d*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt 
(a)*gamma(5/4)) + e*x**3*gamma(3/4)*hyper((1/2, 3/4), (7/4,), c*x**4*exp_p 
olar(I*pi)/a)/(4*sqrt(a)*gamma(7/4))
 

Maxima [F]

\[ \int \frac {d+e x^2}{\sqrt {a+c x^4}} \, dx=\int { \frac {e x^{2} + d}{\sqrt {c x^{4} + a}} \,d x } \] Input:

integrate((e*x^2+d)/(c*x^4+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate((e*x^2 + d)/sqrt(c*x^4 + a), x)
 

Giac [F]

\[ \int \frac {d+e x^2}{\sqrt {a+c x^4}} \, dx=\int { \frac {e x^{2} + d}{\sqrt {c x^{4} + a}} \,d x } \] Input:

integrate((e*x^2+d)/(c*x^4+a)^(1/2),x, algorithm="giac")
 

Output:

integrate((e*x^2 + d)/sqrt(c*x^4 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {d+e x^2}{\sqrt {a+c x^4}} \, dx=\int \frac {e\,x^2+d}{\sqrt {c\,x^4+a}} \,d x \] Input:

int((d + e*x^2)/(a + c*x^4)^(1/2),x)
 

Output:

int((d + e*x^2)/(a + c*x^4)^(1/2), x)
 

Reduce [F]

\[ \int \frac {d+e x^2}{\sqrt {a+c x^4}} \, dx=\left (\int \frac {\sqrt {c \,x^{4}+a}}{c \,x^{4}+a}d x \right ) d +\left (\int \frac {\sqrt {c \,x^{4}+a}\, x^{2}}{c \,x^{4}+a}d x \right ) e \] Input:

int((e*x^2+d)/(c*x^4+a)^(1/2),x)
 

Output:

int(sqrt(a + c*x**4)/(a + c*x**4),x)*d + int((sqrt(a + c*x**4)*x**2)/(a + 
c*x**4),x)*e