\(\int \frac {1}{(d+e x^2)^2 \sqrt {a+c x^4}} \, dx\) [426]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 581 \[ \int \frac {1}{\left (d+e x^2\right )^2 \sqrt {a+c x^4}} \, dx=-\frac {\sqrt {c} e x \sqrt {a+c x^4}}{2 d \left (c d^2+a e^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {e^2 x \sqrt {a+c x^4}}{2 d \left (c d^2+a e^2\right ) \left (d+e x^2\right )}+\frac {\sqrt {e} \left (3 c d^2+a e^2\right ) \arctan \left (\frac {\sqrt {c d^2+a e^2} x}{\sqrt {d} \sqrt {e} \sqrt {a+c x^4}}\right )}{4 d^{3/2} \left (c d^2+a e^2\right )^{3/2}}+\frac {\sqrt [4]{a} \sqrt [4]{c} e \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 d \left (c d^2+a e^2\right ) \sqrt {a+c x^4}}+\frac {\sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} d \left (\sqrt {c} d-\sqrt {a} e\right ) \sqrt {a+c x^4}}-\frac {\left (\sqrt {c} d+\sqrt {a} e\right ) \left (3 c d^2+a e^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticPi}\left (-\frac {\left (\sqrt {c} d-\sqrt {a} e\right )^2}{4 \sqrt {a} \sqrt {c} d e},2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{8 \sqrt [4]{a} \sqrt [4]{c} d^2 \left (\sqrt {c} d-\sqrt {a} e\right ) \left (c d^2+a e^2\right ) \sqrt {a+c x^4}} \] Output:

-1/2*c^(1/2)*e*x*(c*x^4+a)^(1/2)/d/(a*e^2+c*d^2)/(a^(1/2)+c^(1/2)*x^2)+1/2 
*e^2*x*(c*x^4+a)^(1/2)/d/(a*e^2+c*d^2)/(e*x^2+d)+1/4*e^(1/2)*(a*e^2+3*c*d^ 
2)*arctan((a*e^2+c*d^2)^(1/2)*x/d^(1/2)/e^(1/2)/(c*x^4+a)^(1/2))/d^(3/2)/( 
a*e^2+c*d^2)^(3/2)+1/2*a^(1/4)*c^(1/4)*e*(a^(1/2)+c^(1/2)*x^2)*((c*x^4+a)/ 
(a^(1/2)+c^(1/2)*x^2)^2)^(1/2)*EllipticE(sin(2*arctan(c^(1/4)*x/a^(1/4))), 
1/2*2^(1/2))/d/(a*e^2+c*d^2)/(c*x^4+a)^(1/2)+1/2*c^(1/4)*(a^(1/2)+c^(1/2)* 
x^2)*((c*x^4+a)/(a^(1/2)+c^(1/2)*x^2)^2)^(1/2)*InverseJacobiAM(2*arctan(c^ 
(1/4)*x/a^(1/4)),1/2*2^(1/2))/a^(1/4)/d/(c^(1/2)*d-a^(1/2)*e)/(c*x^4+a)^(1 
/2)-1/8*(c^(1/2)*d+a^(1/2)*e)*(a*e^2+3*c*d^2)*(a^(1/2)+c^(1/2)*x^2)*((c*x^ 
4+a)/(a^(1/2)+c^(1/2)*x^2)^2)^(1/2)*EllipticPi(sin(2*arctan(c^(1/4)*x/a^(1 
/4))),-1/4*(c^(1/2)*d-a^(1/2)*e)^2/a^(1/2)/c^(1/2)/d/e,1/2*2^(1/2))/a^(1/4 
)/c^(1/4)/d^2/(c^(1/2)*d-a^(1/2)*e)/(a*e^2+c*d^2)/(c*x^4+a)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.60 (sec) , antiderivative size = 522, normalized size of antiderivative = 0.90 \[ \int \frac {1}{\left (d+e x^2\right )^2 \sqrt {a+c x^4}} \, dx=\frac {a \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}} d e^2 x+\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}} c d e^2 x^5-\sqrt {a} \sqrt {c} d e \left (d+e x^2\right ) \sqrt {1+\frac {c x^4}{a}} E\left (\left .i \text {arcsinh}\left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}} x\right )\right |-1\right )+\sqrt {c} d \left (i \sqrt {c} d+\sqrt {a} e\right ) \left (d+e x^2\right ) \sqrt {1+\frac {c x^4}{a}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}} x\right ),-1\right )-3 i c d^3 \sqrt {1+\frac {c x^4}{a}} \operatorname {EllipticPi}\left (-\frac {i \sqrt {a} e}{\sqrt {c} d},i \text {arcsinh}\left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}} x\right ),-1\right )-i a d e^2 \sqrt {1+\frac {c x^4}{a}} \operatorname {EllipticPi}\left (-\frac {i \sqrt {a} e}{\sqrt {c} d},i \text {arcsinh}\left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}} x\right ),-1\right )-3 i c d^2 e x^2 \sqrt {1+\frac {c x^4}{a}} \operatorname {EllipticPi}\left (-\frac {i \sqrt {a} e}{\sqrt {c} d},i \text {arcsinh}\left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}} x\right ),-1\right )-i a e^3 x^2 \sqrt {1+\frac {c x^4}{a}} \operatorname {EllipticPi}\left (-\frac {i \sqrt {a} e}{\sqrt {c} d},i \text {arcsinh}\left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}} x\right ),-1\right )}{2 \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}} d^2 \left (c d^2+a e^2\right ) \left (d+e x^2\right ) \sqrt {a+c x^4}} \] Input:

Integrate[1/((d + e*x^2)^2*Sqrt[a + c*x^4]),x]
 

Output:

(a*Sqrt[(I*Sqrt[c])/Sqrt[a]]*d*e^2*x + Sqrt[(I*Sqrt[c])/Sqrt[a]]*c*d*e^2*x 
^5 - Sqrt[a]*Sqrt[c]*d*e*(d + e*x^2)*Sqrt[1 + (c*x^4)/a]*EllipticE[I*ArcSi 
nh[Sqrt[(I*Sqrt[c])/Sqrt[a]]*x], -1] + Sqrt[c]*d*(I*Sqrt[c]*d + Sqrt[a]*e) 
*(d + e*x^2)*Sqrt[1 + (c*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[c])/Sqrt 
[a]]*x], -1] - (3*I)*c*d^3*Sqrt[1 + (c*x^4)/a]*EllipticPi[((-I)*Sqrt[a]*e) 
/(Sqrt[c]*d), I*ArcSinh[Sqrt[(I*Sqrt[c])/Sqrt[a]]*x], -1] - I*a*d*e^2*Sqrt 
[1 + (c*x^4)/a]*EllipticPi[((-I)*Sqrt[a]*e)/(Sqrt[c]*d), I*ArcSinh[Sqrt[(I 
*Sqrt[c])/Sqrt[a]]*x], -1] - (3*I)*c*d^2*e*x^2*Sqrt[1 + (c*x^4)/a]*Ellipti 
cPi[((-I)*Sqrt[a]*e)/(Sqrt[c]*d), I*ArcSinh[Sqrt[(I*Sqrt[c])/Sqrt[a]]*x], 
-1] - I*a*e^3*x^2*Sqrt[1 + (c*x^4)/a]*EllipticPi[((-I)*Sqrt[a]*e)/(Sqrt[c] 
*d), I*ArcSinh[Sqrt[(I*Sqrt[c])/Sqrt[a]]*x], -1])/(2*Sqrt[(I*Sqrt[c])/Sqrt 
[a]]*d^2*(c*d^2 + a*e^2)*(d + e*x^2)*Sqrt[a + c*x^4])
 

Rubi [A] (verified)

Time = 1.79 (sec) , antiderivative size = 569, normalized size of antiderivative = 0.98, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {1552, 25, 2233, 27, 1510, 2227, 27, 761, 2221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {a+c x^4} \left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 1552

\(\displaystyle \frac {e^2 x \sqrt {a+c x^4}}{2 d \left (d+e x^2\right ) \left (a e^2+c d^2\right )}-\frac {\int -\frac {-c e^2 x^4-2 c d e x^2+2 c d^2+a e^2}{\left (e x^2+d\right ) \sqrt {c x^4+a}}dx}{2 d \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {-c e^2 x^4-2 c d e x^2+2 c d^2+a e^2}{\left (e x^2+d\right ) \sqrt {c x^4+a}}dx}{2 d \left (a e^2+c d^2\right )}+\frac {e^2 x \sqrt {a+c x^4}}{2 d \left (d+e x^2\right ) \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 2233

\(\displaystyle \frac {\frac {\int \frac {c e \left (2 c d^2-\sqrt {a} \sqrt {c} e d+a e^2-\sqrt {c} e \left (\sqrt {c} d+\sqrt {a} e\right ) x^2\right )}{\left (e x^2+d\right ) \sqrt {c x^4+a}}dx}{c e}+\sqrt {a} \sqrt {c} e \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {a} \sqrt {c x^4+a}}dx}{2 d \left (a e^2+c d^2\right )}+\frac {e^2 x \sqrt {a+c x^4}}{2 d \left (d+e x^2\right ) \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {2 c d^2-\sqrt {a} \sqrt {c} e d+a e^2-\sqrt {c} e \left (\sqrt {c} d+\sqrt {a} e\right ) x^2}{\left (e x^2+d\right ) \sqrt {c x^4+a}}dx+\sqrt {c} e \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+a}}dx}{2 d \left (a e^2+c d^2\right )}+\frac {e^2 x \sqrt {a+c x^4}}{2 d \left (d+e x^2\right ) \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {\int \frac {2 c d^2-\sqrt {a} \sqrt {c} e d+a e^2-\sqrt {c} e \left (\sqrt {c} d+\sqrt {a} e\right ) x^2}{\left (e x^2+d\right ) \sqrt {c x^4+a}}dx+\sqrt {c} e \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{c} \sqrt {a+c x^4}}-\frac {x \sqrt {a+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{2 d \left (a e^2+c d^2\right )}+\frac {e^2 x \sqrt {a+c x^4}}{2 d \left (d+e x^2\right ) \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 2227

\(\displaystyle \frac {\frac {2 \sqrt {c} \left (a e^2+c d^2\right ) \int \frac {1}{\sqrt {c x^4+a}}dx}{\sqrt {c} d-\sqrt {a} e}-\frac {\sqrt {a} e \left (a e^2+3 c d^2\right ) \int \frac {\sqrt {c} x^2+\sqrt {a}}{\sqrt {a} \left (e x^2+d\right ) \sqrt {c x^4+a}}dx}{\sqrt {c} d-\sqrt {a} e}+\sqrt {c} e \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{c} \sqrt {a+c x^4}}-\frac {x \sqrt {a+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{2 d \left (a e^2+c d^2\right )}+\frac {e^2 x \sqrt {a+c x^4}}{2 d \left (d+e x^2\right ) \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 \sqrt {c} \left (a e^2+c d^2\right ) \int \frac {1}{\sqrt {c x^4+a}}dx}{\sqrt {c} d-\sqrt {a} e}-\frac {e \left (a e^2+3 c d^2\right ) \int \frac {\sqrt {c} x^2+\sqrt {a}}{\left (e x^2+d\right ) \sqrt {c x^4+a}}dx}{\sqrt {c} d-\sqrt {a} e}+\sqrt {c} e \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{c} \sqrt {a+c x^4}}-\frac {x \sqrt {a+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{2 d \left (a e^2+c d^2\right )}+\frac {e^2 x \sqrt {a+c x^4}}{2 d \left (d+e x^2\right ) \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {-\frac {e \left (a e^2+3 c d^2\right ) \int \frac {\sqrt {c} x^2+\sqrt {a}}{\left (e x^2+d\right ) \sqrt {c x^4+a}}dx}{\sqrt {c} d-\sqrt {a} e}+\frac {\sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (a e^2+c d^2\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{\sqrt [4]{a} \sqrt {a+c x^4} \left (\sqrt {c} d-\sqrt {a} e\right )}+\sqrt {c} e \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{c} \sqrt {a+c x^4}}-\frac {x \sqrt {a+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{2 d \left (a e^2+c d^2\right )}+\frac {e^2 x \sqrt {a+c x^4}}{2 d \left (d+e x^2\right ) \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 2221

\(\displaystyle \frac {\frac {\sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (a e^2+c d^2\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{\sqrt [4]{a} \sqrt {a+c x^4} \left (\sqrt {c} d-\sqrt {a} e\right )}-\frac {e \left (a e^2+3 c d^2\right ) \left (\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\sqrt {a} e+\sqrt {c} d\right ) \operatorname {EllipticPi}\left (-\frac {\sqrt {a} \left (\frac {\sqrt {c} d}{\sqrt {a}}-e\right )^2}{4 \sqrt {c} d e},2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{a} \sqrt [4]{c} d e \sqrt {a+c x^4}}-\frac {\left (\sqrt {c} d-\sqrt {a} e\right ) \arctan \left (\frac {x \sqrt {a e^2+c d^2}}{\sqrt {d} \sqrt {e} \sqrt {a+c x^4}}\right )}{2 \sqrt {d} \sqrt {e} \sqrt {a e^2+c d^2}}\right )}{\sqrt {c} d-\sqrt {a} e}+\sqrt {c} e \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{\sqrt [4]{c} \sqrt {a+c x^4}}-\frac {x \sqrt {a+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{2 d \left (a e^2+c d^2\right )}+\frac {e^2 x \sqrt {a+c x^4}}{2 d \left (d+e x^2\right ) \left (a e^2+c d^2\right )}\)

Input:

Int[1/((d + e*x^2)^2*Sqrt[a + c*x^4]),x]
 

Output:

(e^2*x*Sqrt[a + c*x^4])/(2*d*(c*d^2 + a*e^2)*(d + e*x^2)) + (Sqrt[c]*e*(-( 
(x*Sqrt[a + c*x^4])/(Sqrt[a] + Sqrt[c]*x^2)) + (a^(1/4)*(Sqrt[a] + Sqrt[c] 
*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1 
/4)*x)/a^(1/4)], 1/2])/(c^(1/4)*Sqrt[a + c*x^4])) + (c^(1/4)*(c*d^2 + a*e^ 
2)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*Ell 
ipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(a^(1/4)*(Sqrt[c]*d - Sqrt[a]* 
e)*Sqrt[a + c*x^4]) - (e*(3*c*d^2 + a*e^2)*(-1/2*((Sqrt[c]*d - Sqrt[a]*e)* 
ArcTan[(Sqrt[c*d^2 + a*e^2]*x)/(Sqrt[d]*Sqrt[e]*Sqrt[a + c*x^4])])/(Sqrt[d 
]*Sqrt[e]*Sqrt[c*d^2 + a*e^2]) + ((Sqrt[c]*d + Sqrt[a]*e)*(Sqrt[a] + Sqrt[ 
c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticPi[-1/4*(Sqrt[ 
a]*((Sqrt[c]*d)/Sqrt[a] - e)^2)/(Sqrt[c]*d*e), 2*ArcTan[(c^(1/4)*x)/a^(1/4 
)], 1/2])/(4*a^(1/4)*c^(1/4)*d*e*Sqrt[a + c*x^4])))/(Sqrt[c]*d - Sqrt[a]*e 
))/(2*d*(c*d^2 + a*e^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 1552
Int[((d_) + (e_.)*(x_)^2)^(q_)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp 
[(-e^2)*x*(d + e*x^2)^(q + 1)*(Sqrt[a + c*x^4]/(2*d*(q + 1)*(c*d^2 + a*e^2) 
)), x] + Simp[1/(2*d*(q + 1)*(c*d^2 + a*e^2))   Int[((d + e*x^2)^(q + 1)/Sq 
rt[a + c*x^4])*Simp[a*e^2*(2*q + 3) + 2*c*d^2*(q + 1) - 2*e*c*d*(q + 1)*x^2 
 + c*e^2*(2*q + 5)*x^4, x], x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + 
 a*e^2, 0] && ILtQ[q, -1]
 

rule 2221
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTan[Rt[c*(d/e 
) + a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[c*(d/e) + a*(e/d), 2])), x] 
+ Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(4* 
d*e*q*Sqrt[a + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*ArcTan[q*x 
], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && Po 
sQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && PosQ[c*(d/e) + a*(e/d)]
 

rule 2227
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[c/a, 2]}, Simp[(A*(c*d + a*e*q) - a*B*(e + d*q) 
)/(c*d^2 - a*e^2)   Int[1/Sqrt[a + c*x^4], x], x] + Simp[a*(B*d - A*e)*((e 
+ d*q)/(c*d^2 - a*e^2))   Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x] 
, x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] 
 && NeQ[c*A^2 - a*B^2, 0]
 

rule 2233
Int[(P4x_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> 
With[{q = Rt[c/a, 2], A = Coeff[P4x, x, 0], B = Coeff[P4x, x, 2], C = Coeff 
[P4x, x, 4]}, Simp[-C/(e*q)   Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] + Sim 
p[1/(c*e)   Int[(A*c*e + a*C*d*q + (B*c*e - C*(c*d - a*e*q))*x^2)/((d + e*x 
^2)*Sqrt[a + c*x^4]), x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[P4x, x^2, 
2] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.66 (sec) , antiderivative size = 556, normalized size of antiderivative = 0.96

method result size
default \(\frac {e^{2} x \sqrt {c \,x^{4}+a}}{2 d \left (a \,e^{2}+c \,d^{2}\right ) \left (e \,x^{2}+d \right )}-\frac {c \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{2 \left (a \,e^{2}+c \,d^{2}\right ) \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}-\frac {i \sqrt {c}\, e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{2 d \left (a \,e^{2}+c \,d^{2}\right ) \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {i \sqrt {c}\, e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{2 d \left (a \,e^{2}+c \,d^{2}\right ) \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {e^{2} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, \frac {i \sqrt {a}\, e}{\sqrt {c}\, d}, \frac {\sqrt {-\frac {i \sqrt {c}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}}\right ) a}{2 d^{2} \left (a \,e^{2}+c \,d^{2}\right ) \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {3 \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, \frac {i \sqrt {a}\, e}{\sqrt {c}\, d}, \frac {\sqrt {-\frac {i \sqrt {c}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}}\right ) c}{2 \left (a \,e^{2}+c \,d^{2}\right ) \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\) \(556\)
elliptic \(\frac {e^{2} x \sqrt {c \,x^{4}+a}}{2 d \left (a \,e^{2}+c \,d^{2}\right ) \left (e \,x^{2}+d \right )}-\frac {c \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{2 \left (a \,e^{2}+c \,d^{2}\right ) \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}-\frac {i \sqrt {c}\, e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{2 d \left (a \,e^{2}+c \,d^{2}\right ) \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {i \sqrt {c}\, e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{2 d \left (a \,e^{2}+c \,d^{2}\right ) \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {e^{2} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, \frac {i \sqrt {a}\, e}{\sqrt {c}\, d}, \frac {\sqrt {-\frac {i \sqrt {c}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}}\right ) a}{2 d^{2} \left (a \,e^{2}+c \,d^{2}\right ) \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {3 \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, \frac {i \sqrt {a}\, e}{\sqrt {c}\, d}, \frac {\sqrt {-\frac {i \sqrt {c}}{\sqrt {a}}}}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}}\right ) c}{2 \left (a \,e^{2}+c \,d^{2}\right ) \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\) \(556\)

Input:

int(1/(e*x^2+d)^2/(c*x^4+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/2*e^2*x*(c*x^4+a)^(1/2)/d/(a*e^2+c*d^2)/(e*x^2+d)-1/2*c/(a*e^2+c*d^2)/(I 
/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/ 
2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)-1/2 
*I*c^(1/2)*e/d/(a*e^2+c*d^2)*a^(1/2)/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2 
)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*Ellip 
ticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)+1/2*I*c^(1/2)*e/d/(a*e^2+c*d^2)*a^(1/2 
)/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c 
^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticE(x*(I/a^(1/2)*c^(1/2))^(1/2),I) 
+1/2/d^2/(a*e^2+c*d^2)*e^2/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)* 
x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticPi(x*(I 
/a^(1/2)*c^(1/2))^(1/2),I*a^(1/2)/c^(1/2)/d*e,(-I/a^(1/2)*c^(1/2))^(1/2)/( 
I/a^(1/2)*c^(1/2))^(1/2))*a+3/2/(a*e^2+c*d^2)/(I/a^(1/2)*c^(1/2))^(1/2)*(1 
-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1 
/2)*EllipticPi(x*(I/a^(1/2)*c^(1/2))^(1/2),I*a^(1/2)/c^(1/2)/d*e,(-I/a^(1/ 
2)*c^(1/2))^(1/2)/(I/a^(1/2)*c^(1/2))^(1/2))*c
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\left (d+e x^2\right )^2 \sqrt {a+c x^4}} \, dx=\text {Timed out} \] Input:

integrate(1/(e*x^2+d)^2/(c*x^4+a)^(1/2),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {1}{\left (d+e x^2\right )^2 \sqrt {a+c x^4}} \, dx=\int \frac {1}{\sqrt {a + c x^{4}} \left (d + e x^{2}\right )^{2}}\, dx \] Input:

integrate(1/(e*x**2+d)**2/(c*x**4+a)**(1/2),x)
 

Output:

Integral(1/(sqrt(a + c*x**4)*(d + e*x**2)**2), x)
 

Maxima [F]

\[ \int \frac {1}{\left (d+e x^2\right )^2 \sqrt {a+c x^4}} \, dx=\int { \frac {1}{\sqrt {c x^{4} + a} {\left (e x^{2} + d\right )}^{2}} \,d x } \] Input:

integrate(1/(e*x^2+d)^2/(c*x^4+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate(1/(sqrt(c*x^4 + a)*(e*x^2 + d)^2), x)
 

Giac [F]

\[ \int \frac {1}{\left (d+e x^2\right )^2 \sqrt {a+c x^4}} \, dx=\int { \frac {1}{\sqrt {c x^{4} + a} {\left (e x^{2} + d\right )}^{2}} \,d x } \] Input:

integrate(1/(e*x^2+d)^2/(c*x^4+a)^(1/2),x, algorithm="giac")
 

Output:

integrate(1/(sqrt(c*x^4 + a)*(e*x^2 + d)^2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (d+e x^2\right )^2 \sqrt {a+c x^4}} \, dx=\int \frac {1}{\sqrt {c\,x^4+a}\,{\left (e\,x^2+d\right )}^2} \,d x \] Input:

int(1/((a + c*x^4)^(1/2)*(d + e*x^2)^2),x)
 

Output:

int(1/((a + c*x^4)^(1/2)*(d + e*x^2)^2), x)
 

Reduce [F]

\[ \int \frac {1}{\left (d+e x^2\right )^2 \sqrt {a+c x^4}} \, dx=\int \frac {\sqrt {c \,x^{4}+a}}{c \,e^{2} x^{8}+2 c d e \,x^{6}+a \,e^{2} x^{4}+c \,d^{2} x^{4}+2 a d e \,x^{2}+a \,d^{2}}d x \] Input:

int(1/(e*x^2+d)^2/(c*x^4+a)^(1/2),x)
 

Output:

int(sqrt(a + c*x**4)/(a*d**2 + 2*a*d*e*x**2 + a*e**2*x**4 + c*d**2*x**4 + 
2*c*d*e*x**6 + c*e**2*x**8),x)