\(\int \frac {d+e x^2}{\sqrt {-a+c x^4}} \, dx\) [428]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 125 \[ \int \frac {d+e x^2}{\sqrt {-a+c x^4}} \, dx=\frac {a^{3/4} e \sqrt {1-\frac {c x^4}{a}} E\left (\left .\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{c^{3/4} \sqrt {-a+c x^4}}+\frac {\sqrt [4]{a} \left (d-\frac {\sqrt {a} e}{\sqrt {c}}\right ) \sqrt {1-\frac {c x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt [4]{c} \sqrt {-a+c x^4}} \] Output:

a^(3/4)*e*(1-c*x^4/a)^(1/2)*EllipticE(c^(1/4)*x/a^(1/4),I)/c^(3/4)/(c*x^4- 
a)^(1/2)+a^(1/4)*(d-a^(1/2)*e/c^(1/2))*(1-c*x^4/a)^(1/2)*EllipticF(c^(1/4) 
*x/a^(1/4),I)/c^(1/4)/(c*x^4-a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.04 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.62 \[ \int \frac {d+e x^2}{\sqrt {-a+c x^4}} \, dx=\frac {\sqrt {1-\frac {c x^4}{a}} \left (3 d x \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\frac {c x^4}{a}\right )+e x^3 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},\frac {c x^4}{a}\right )\right )}{3 \sqrt {-a+c x^4}} \] Input:

Integrate[(d + e*x^2)/Sqrt[-a + c*x^4],x]
 

Output:

(Sqrt[1 - (c*x^4)/a]*(3*d*x*Hypergeometric2F1[1/4, 1/2, 5/4, (c*x^4)/a] + 
e*x^3*Hypergeometric2F1[1/2, 3/4, 7/4, (c*x^4)/a]))/(3*Sqrt[-a + c*x^4])
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {1513, 27, 765, 762, 1390, 1389, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x^2}{\sqrt {c x^4-a}} \, dx\)

\(\Big \downarrow \) 1513

\(\displaystyle \left (d-\frac {\sqrt {a} e}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {c x^4-a}}dx+\frac {\sqrt {a} e \int \frac {\sqrt {c} x^2+\sqrt {a}}{\sqrt {a} \sqrt {c x^4-a}}dx}{\sqrt {c}}\)

\(\Big \downarrow \) 27

\(\displaystyle \left (d-\frac {\sqrt {a} e}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {c x^4-a}}dx+\frac {e \int \frac {\sqrt {c} x^2+\sqrt {a}}{\sqrt {c x^4-a}}dx}{\sqrt {c}}\)

\(\Big \downarrow \) 765

\(\displaystyle \frac {\sqrt {1-\frac {c x^4}{a}} \left (d-\frac {\sqrt {a} e}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {1-\frac {c x^4}{a}}}dx}{\sqrt {c x^4-a}}+\frac {e \int \frac {\sqrt {c} x^2+\sqrt {a}}{\sqrt {c x^4-a}}dx}{\sqrt {c}}\)

\(\Big \downarrow \) 762

\(\displaystyle \frac {e \int \frac {\sqrt {c} x^2+\sqrt {a}}{\sqrt {c x^4-a}}dx}{\sqrt {c}}+\frac {\sqrt [4]{a} \sqrt {1-\frac {c x^4}{a}} \left (d-\frac {\sqrt {a} e}{\sqrt {c}}\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt [4]{c} \sqrt {c x^4-a}}\)

\(\Big \downarrow \) 1390

\(\displaystyle \frac {e \sqrt {1-\frac {c x^4}{a}} \int \frac {\sqrt {c} x^2+\sqrt {a}}{\sqrt {1-\frac {c x^4}{a}}}dx}{\sqrt {c} \sqrt {c x^4-a}}+\frac {\sqrt [4]{a} \sqrt {1-\frac {c x^4}{a}} \left (d-\frac {\sqrt {a} e}{\sqrt {c}}\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt [4]{c} \sqrt {c x^4-a}}\)

\(\Big \downarrow \) 1389

\(\displaystyle \frac {\sqrt {a} e \sqrt {1-\frac {c x^4}{a}} \int \frac {\sqrt {\frac {\sqrt {c} x^2}{\sqrt {a}}+1}}{\sqrt {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}}dx}{\sqrt {c} \sqrt {c x^4-a}}+\frac {\sqrt [4]{a} \sqrt {1-\frac {c x^4}{a}} \left (d-\frac {\sqrt {a} e}{\sqrt {c}}\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt [4]{c} \sqrt {c x^4-a}}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {a^{3/4} e \sqrt {1-\frac {c x^4}{a}} E\left (\left .\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{c^{3/4} \sqrt {c x^4-a}}+\frac {\sqrt [4]{a} \sqrt {1-\frac {c x^4}{a}} \left (d-\frac {\sqrt {a} e}{\sqrt {c}}\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt [4]{c} \sqrt {c x^4-a}}\)

Input:

Int[(d + e*x^2)/Sqrt[-a + c*x^4],x]
 

Output:

(a^(3/4)*e*Sqrt[1 - (c*x^4)/a]*EllipticE[ArcSin[(c^(1/4)*x)/a^(1/4)], -1]) 
/(c^(3/4)*Sqrt[-a + c*x^4]) + (a^(1/4)*(d - (Sqrt[a]*e)/Sqrt[c])*Sqrt[1 - 
(c*x^4)/a]*EllipticF[ArcSin[(c^(1/4)*x)/a^(1/4)], -1])/(c^(1/4)*Sqrt[-a + 
c*x^4])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 765
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[Sqrt[1 + b*(x^4/a)]/Sqrt 
[a + b*x^4]   Int[1/Sqrt[1 + b*(x^4/a)], x], x] /; FreeQ[{a, b}, x] && NegQ 
[b/a] &&  !GtQ[a, 0]
 

rule 1389
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp[d/Sq 
rt[a]   Int[Sqrt[1 + e*(x^2/d)]/Sqrt[1 - e*(x^2/d)], x], x] /; FreeQ[{a, c, 
 d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && NegQ[c/a] && GtQ[a, 0]
 

rule 1390
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp[Sqrt 
[1 + c*(x^4/a)]/Sqrt[a + c*x^4]   Int[(d + e*x^2)/Sqrt[1 + c*(x^4/a)], x], 
x] /; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && NegQ[c/a] &&  !GtQ 
[a, 0] &&  !(LtQ[a, 0] && GtQ[c, 0])
 

rule 1513
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[-c/a, 2]}, Simp[(d*q - e)/q   Int[1/Sqrt[a + c*x^4], x], x] + Simp[e/q 
  Int[(1 + q*x^2)/Sqrt[a + c*x^4], x], x]] /; FreeQ[{a, c, d, e}, x] && Neg 
Q[c/a] && NeQ[c*d^2 + a*e^2, 0]
 
Maple [A] (verified)

Time = 0.71 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.28

method result size
default \(\frac {d \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}-a}}+\frac {e \sqrt {a}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}-a}\, \sqrt {c}}\) \(160\)
elliptic \(\frac {d \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}-a}}+\frac {e \sqrt {a}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}-a}\, \sqrt {c}}\) \(160\)

Input:

int((e*x^2+d)/(c*x^4-a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

d/(-1/a^(1/2)*c^(1/2))^(1/2)*(1+1/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1-1/a^(1/2)* 
c^(1/2)*x^2)^(1/2)/(c*x^4-a)^(1/2)*EllipticF(x*(-1/a^(1/2)*c^(1/2))^(1/2), 
I)+e*a^(1/2)/(-1/a^(1/2)*c^(1/2))^(1/2)*(1+1/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1 
-1/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4-a)^(1/2)/c^(1/2)*(EllipticF(x*(-1/a^( 
1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(-1/a^(1/2)*c^(1/2))^(1/2),I))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.70 \[ \int \frac {d+e x^2}{\sqrt {-a+c x^4}} \, dx=\frac {a \sqrt {c} e x \left (\frac {a}{c}\right )^{\frac {3}{4}} E(\arcsin \left (\frac {\left (\frac {a}{c}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) - {\left (c d + a e\right )} \sqrt {c} x \left (\frac {a}{c}\right )^{\frac {3}{4}} F(\arcsin \left (\frac {\left (\frac {a}{c}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + \sqrt {c x^{4} - a} a e}{a c x} \] Input:

integrate((e*x^2+d)/(c*x^4-a)^(1/2),x, algorithm="fricas")
 

Output:

(a*sqrt(c)*e*x*(a/c)^(3/4)*elliptic_e(arcsin((a/c)^(1/4)/x), -1) - (c*d + 
a*e)*sqrt(c)*x*(a/c)^(3/4)*elliptic_f(arcsin((a/c)^(1/4)/x), -1) + sqrt(c* 
x^4 - a)*a*e)/(a*c*x)
 

Sympy [A] (verification not implemented)

Time = 0.86 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.58 \[ \int \frac {d+e x^2}{\sqrt {-a+c x^4}} \, dx=- \frac {i d x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {c x^{4}}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {5}{4}\right )} - \frac {i e x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {c x^{4}}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {7}{4}\right )} \] Input:

integrate((e*x**2+d)/(c*x**4-a)**(1/2),x)
 

Output:

-I*d*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), c*x**4/a)/(4*sqrt(a)*gamma(5/4 
)) - I*e*x**3*gamma(3/4)*hyper((1/2, 3/4), (7/4,), c*x**4/a)/(4*sqrt(a)*ga 
mma(7/4))
 

Maxima [F]

\[ \int \frac {d+e x^2}{\sqrt {-a+c x^4}} \, dx=\int { \frac {e x^{2} + d}{\sqrt {c x^{4} - a}} \,d x } \] Input:

integrate((e*x^2+d)/(c*x^4-a)^(1/2),x, algorithm="maxima")
 

Output:

integrate((e*x^2 + d)/sqrt(c*x^4 - a), x)
 

Giac [F]

\[ \int \frac {d+e x^2}{\sqrt {-a+c x^4}} \, dx=\int { \frac {e x^{2} + d}{\sqrt {c x^{4} - a}} \,d x } \] Input:

integrate((e*x^2+d)/(c*x^4-a)^(1/2),x, algorithm="giac")
 

Output:

integrate((e*x^2 + d)/sqrt(c*x^4 - a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {d+e x^2}{\sqrt {-a+c x^4}} \, dx=\int \frac {e\,x^2+d}{\sqrt {c\,x^4-a}} \,d x \] Input:

int((d + e*x^2)/(c*x^4 - a)^(1/2),x)
 

Output:

int((d + e*x^2)/(c*x^4 - a)^(1/2), x)
 

Reduce [F]

\[ \int \frac {d+e x^2}{\sqrt {-a+c x^4}} \, dx=-\left (\int \frac {\sqrt {c \,x^{4}-a}}{-c \,x^{4}+a}d x \right ) d -\left (\int \frac {\sqrt {c \,x^{4}-a}\, x^{2}}{-c \,x^{4}+a}d x \right ) e \] Input:

int((e*x^2+d)/(c*x^4-a)^(1/2),x)
 

Output:

 - (int(sqrt( - a + c*x**4)/(a - c*x**4),x)*d + int((sqrt( - a + c*x**4)*x 
**2)/(a - c*x**4),x)*e)