\(\int \frac {(d+e x^2)^{7/2}}{(a-c x^4)^{5/2}} \, dx\) [466]

Optimal result
Mathematica [F]
Rubi [F]
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 531 \[ \int \frac {\left (d+e x^2\right )^{7/2}}{\left (a-c x^4\right )^{5/2}} \, dx=\frac {x \left (d+e x^2\right )^{7/2}}{6 a \left (a-c x^4\right )^{3/2}}+\frac {x \left (5 d-2 e x^2\right ) \left (d+e x^2\right )^{5/2}}{12 a^2 \sqrt {a-c x^4}}+\frac {e \left (2 c d^2-a e^2\right ) \sqrt {d+e x^2} \sqrt {a-c x^4}}{3 a^2 c^2 x}+\frac {d e^2 x \sqrt {d+e x^2} \sqrt {a-c x^4}}{12 a^2 c}-\frac {e^3 x^3 \sqrt {d+e x^2} \sqrt {a-c x^4}}{6 a^2 c}+\frac {e \left (d+\frac {\sqrt {a} e}{\sqrt {c}}\right ) \left (2 c d^2-a e^2\right ) \sqrt {1-\frac {a}{c x^4}} x^3 \sqrt {\frac {\sqrt {a} \left (d+e x^2\right )}{\left (\sqrt {c} d+\sqrt {a} e\right ) x^2}} E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {a}}{\sqrt {c} x^2}}}{\sqrt {2}}\right )|\frac {2 d}{d+\frac {\sqrt {a} e}{\sqrt {c}}}\right )}{3 a^2 c \sqrt {d+e x^2} \sqrt {a-c x^4}}+\frac {\left (5 c^2 d^4-9 a c d^2 e^2+4 a^2 e^4\right ) \sqrt {1-\frac {a}{c x^4}} x^3 \sqrt {\frac {\sqrt {a} \left (d+e x^2\right )}{\left (\sqrt {c} d+\sqrt {a} e\right ) x^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {a}}{\sqrt {c} x^2}}}{\sqrt {2}}\right ),\frac {2 d}{d+\frac {\sqrt {a} e}{\sqrt {c}}}\right )}{12 a^{5/2} c^{3/2} \sqrt {d+e x^2} \sqrt {a-c x^4}} \] Output:

1/6*x*(e*x^2+d)^(7/2)/a/(-c*x^4+a)^(3/2)+1/12*x*(-2*e*x^2+5*d)*(e*x^2+d)^( 
5/2)/a^2/(-c*x^4+a)^(1/2)+1/3*e*(-a*e^2+2*c*d^2)*(e*x^2+d)^(1/2)*(-c*x^4+a 
)^(1/2)/a^2/c^2/x+1/12*d*e^2*x*(e*x^2+d)^(1/2)*(-c*x^4+a)^(1/2)/a^2/c-1/6* 
e^3*x^3*(e*x^2+d)^(1/2)*(-c*x^4+a)^(1/2)/a^2/c+1/3*e*(d+a^(1/2)*e/c^(1/2)) 
*(-a*e^2+2*c*d^2)*(1-a/c/x^4)^(1/2)*x^3*(a^(1/2)*(e*x^2+d)/(c^(1/2)*d+a^(1 
/2)*e)/x^2)^(1/2)*EllipticE(1/2*(1-a^(1/2)/c^(1/2)/x^2)^(1/2)*2^(1/2),2^(1 
/2)*(d/(d+a^(1/2)*e/c^(1/2)))^(1/2))/a^2/c/(e*x^2+d)^(1/2)/(-c*x^4+a)^(1/2 
)+1/12*(4*a^2*e^4-9*a*c*d^2*e^2+5*c^2*d^4)*(1-a/c/x^4)^(1/2)*x^3*(a^(1/2)* 
(e*x^2+d)/(c^(1/2)*d+a^(1/2)*e)/x^2)^(1/2)*EllipticF(1/2*(1-a^(1/2)/c^(1/2 
)/x^2)^(1/2)*2^(1/2),2^(1/2)*(d/(d+a^(1/2)*e/c^(1/2)))^(1/2))/a^(5/2)/c^(3 
/2)/(e*x^2+d)^(1/2)/(-c*x^4+a)^(1/2)
 

Mathematica [F]

\[ \int \frac {\left (d+e x^2\right )^{7/2}}{\left (a-c x^4\right )^{5/2}} \, dx=\int \frac {\left (d+e x^2\right )^{7/2}}{\left (a-c x^4\right )^{5/2}} \, dx \] Input:

Integrate[(d + e*x^2)^(7/2)/(a - c*x^4)^(5/2),x]
 

Output:

Integrate[(d + e*x^2)^(7/2)/(a - c*x^4)^(5/2), x]
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (d+e x^2\right )^{7/2}}{\left (a-c x^4\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 1571

\(\displaystyle \int \frac {\left (d+e x^2\right )^{7/2}}{\left (a-c x^4\right )^{5/2}}dx\)

Input:

Int[(d + e*x^2)^(7/2)/(a - c*x^4)^(5/2),x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 1571
Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> U 
nintegrable[(d + e*x^2)^q*(a + c*x^4)^p, x] /; FreeQ[{a, c, d, e, p, q}, x]
 
Maple [F]

\[\int \frac {\left (e \,x^{2}+d \right )^{\frac {7}{2}}}{\left (-c \,x^{4}+a \right )^{\frac {5}{2}}}d x\]

Input:

int((e*x^2+d)^(7/2)/(-c*x^4+a)^(5/2),x)
 

Output:

int((e*x^2+d)^(7/2)/(-c*x^4+a)^(5/2),x)
 

Fricas [F]

\[ \int \frac {\left (d+e x^2\right )^{7/2}}{\left (a-c x^4\right )^{5/2}} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{\frac {7}{2}}}{{\left (-c x^{4} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((e*x^2+d)^(7/2)/(-c*x^4+a)^(5/2),x, algorithm="fricas")
 

Output:

integral(-(e^3*x^6 + 3*d*e^2*x^4 + 3*d^2*e*x^2 + d^3)*sqrt(-c*x^4 + a)*sqr 
t(e*x^2 + d)/(c^3*x^12 - 3*a*c^2*x^8 + 3*a^2*c*x^4 - a^3), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (d+e x^2\right )^{7/2}}{\left (a-c x^4\right )^{5/2}} \, dx=\text {Timed out} \] Input:

integrate((e*x**2+d)**(7/2)/(-c*x**4+a)**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\left (d+e x^2\right )^{7/2}}{\left (a-c x^4\right )^{5/2}} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{\frac {7}{2}}}{{\left (-c x^{4} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((e*x^2+d)^(7/2)/(-c*x^4+a)^(5/2),x, algorithm="maxima")
 

Output:

integrate((e*x^2 + d)^(7/2)/(-c*x^4 + a)^(5/2), x)
 

Giac [F]

\[ \int \frac {\left (d+e x^2\right )^{7/2}}{\left (a-c x^4\right )^{5/2}} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{\frac {7}{2}}}{{\left (-c x^{4} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((e*x^2+d)^(7/2)/(-c*x^4+a)^(5/2),x, algorithm="giac")
 

Output:

integrate((e*x^2 + d)^(7/2)/(-c*x^4 + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d+e x^2\right )^{7/2}}{\left (a-c x^4\right )^{5/2}} \, dx=\int \frac {{\left (e\,x^2+d\right )}^{7/2}}{{\left (a-c\,x^4\right )}^{5/2}} \,d x \] Input:

int((d + e*x^2)^(7/2)/(a - c*x^4)^(5/2),x)
 

Output:

int((d + e*x^2)^(7/2)/(a - c*x^4)^(5/2), x)
 

Reduce [F]

\[ \int \frac {\left (d+e x^2\right )^{7/2}}{\left (a-c x^4\right )^{5/2}} \, dx=\text {too large to display} \] Input:

int((e*x^2+d)^(7/2)/(-c*x^4+a)^(5/2),x)
 

Output:

( - 9*sqrt(d + e*x**2)*sqrt(a - c*x**4)*a**2*d*e**4*x + 6*sqrt(d + e*x**2) 
*sqrt(a - c*x**4)*a**2*e**5*x**3 + 30*sqrt(d + e*x**2)*sqrt(a - c*x**4)*a* 
c*d**3*e**2*x - 4*sqrt(d + e*x**2)*sqrt(a - c*x**4)*a*c*d**2*e**3*x**3 + 1 
1*sqrt(d + e*x**2)*sqrt(a - c*x**4)*a*c*d*e**4*x**5 - 6*sqrt(d + e*x**2)*s 
qrt(a - c*x**4)*c**2*d**5*x + 8*sqrt(d + e*x**2)*sqrt(a - c*x**4)*c**2*d** 
4*e*x**3 - 16*sqrt(d + e*x**2)*sqrt(a - c*x**4)*c**2*d**3*e**2*x**5 - 96*i 
nt((sqrt(d + e*x**2)*sqrt(a - c*x**4)*x**4)/(4*a**4*d*e**2 + 4*a**4*e**3*x 
**2 + a**3*c*d**3 + a**3*c*d**2*e*x**2 - 12*a**3*c*d*e**2*x**4 - 12*a**3*c 
*e**3*x**6 - 3*a**2*c**2*d**3*x**4 - 3*a**2*c**2*d**2*e*x**6 + 12*a**2*c** 
2*d*e**2*x**8 + 12*a**2*c**2*e**3*x**10 + 3*a*c**3*d**3*x**8 + 3*a*c**3*d* 
*2*e*x**10 - 4*a*c**3*d*e**2*x**12 - 4*a*c**3*e**3*x**14 - c**4*d**3*x**12 
 - c**4*d**2*e*x**14),x)*a**6*e**8 + 288*int((sqrt(d + e*x**2)*sqrt(a - c* 
x**4)*x**4)/(4*a**4*d*e**2 + 4*a**4*e**3*x**2 + a**3*c*d**3 + a**3*c*d**2* 
e*x**2 - 12*a**3*c*d*e**2*x**4 - 12*a**3*c*e**3*x**6 - 3*a**2*c**2*d**3*x* 
*4 - 3*a**2*c**2*d**2*e*x**6 + 12*a**2*c**2*d*e**2*x**8 + 12*a**2*c**2*e** 
3*x**10 + 3*a*c**3*d**3*x**8 + 3*a*c**3*d**2*e*x**10 - 4*a*c**3*d*e**2*x** 
12 - 4*a*c**3*e**3*x**14 - c**4*d**3*x**12 - c**4*d**2*e*x**14),x)*a**5*c* 
d**2*e**6 + 192*int((sqrt(d + e*x**2)*sqrt(a - c*x**4)*x**4)/(4*a**4*d*e** 
2 + 4*a**4*e**3*x**2 + a**3*c*d**3 + a**3*c*d**2*e*x**2 - 12*a**3*c*d*e**2 
*x**4 - 12*a**3*c*e**3*x**6 - 3*a**2*c**2*d**3*x**4 - 3*a**2*c**2*d**2*...