\(\int \frac {\sqrt {d+e x^2}}{(a-c x^4)^{5/2}} \, dx\) [469]

Optimal result
Mathematica [F]
Rubi [F]
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 438 \[ \int \frac {\sqrt {d+e x^2}}{\left (a-c x^4\right )^{5/2}} \, dx=\frac {x \sqrt {d+e x^2}}{6 a \left (a-c x^4\right )^{3/2}}-\frac {d e \sqrt {d+e x^2}}{12 a \left (c d^2-a e^2\right ) x \sqrt {a-c x^4}}+\frac {\left (5 c d^2-4 a e^2\right ) x \sqrt {d+e x^2}}{12 a^2 \left (c d^2-a e^2\right ) \sqrt {a-c x^4}}-\frac {\sqrt {c} d e \sqrt {1-\frac {a}{c x^4}} x^3 \sqrt {\frac {\sqrt {a} \left (d+e x^2\right )}{\left (\sqrt {c} d+\sqrt {a} e\right ) x^2}} E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {a}}{\sqrt {c} x^2}}}{\sqrt {2}}\right )|\frac {2 d}{d+\frac {\sqrt {a} e}{\sqrt {c}}}\right )}{12 a^2 \left (\sqrt {c} d-\sqrt {a} e\right ) \sqrt {d+e x^2} \sqrt {a-c x^4}}+\frac {5 \sqrt {c} d \sqrt {1-\frac {a}{c x^4}} x^3 \sqrt {\frac {\sqrt {a} \left (d+e x^2\right )}{\left (\sqrt {c} d+\sqrt {a} e\right ) x^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {a}}{\sqrt {c} x^2}}}{\sqrt {2}}\right ),\frac {2 d}{d+\frac {\sqrt {a} e}{\sqrt {c}}}\right )}{12 a^{5/2} \sqrt {d+e x^2} \sqrt {a-c x^4}} \] Output:

1/6*x*(e*x^2+d)^(1/2)/a/(-c*x^4+a)^(3/2)-1/12*d*e*(e*x^2+d)^(1/2)/a/(-a*e^ 
2+c*d^2)/x/(-c*x^4+a)^(1/2)+1/12*(-4*a*e^2+5*c*d^2)*x*(e*x^2+d)^(1/2)/a^2/ 
(-a*e^2+c*d^2)/(-c*x^4+a)^(1/2)-1/12*c^(1/2)*d*e*(1-a/c/x^4)^(1/2)*x^3*(a^ 
(1/2)*(e*x^2+d)/(c^(1/2)*d+a^(1/2)*e)/x^2)^(1/2)*EllipticE(1/2*(1-a^(1/2)/ 
c^(1/2)/x^2)^(1/2)*2^(1/2),2^(1/2)*(d/(d+a^(1/2)*e/c^(1/2)))^(1/2))/a^2/(c 
^(1/2)*d-a^(1/2)*e)/(e*x^2+d)^(1/2)/(-c*x^4+a)^(1/2)+5/12*c^(1/2)*d*(1-a/c 
/x^4)^(1/2)*x^3*(a^(1/2)*(e*x^2+d)/(c^(1/2)*d+a^(1/2)*e)/x^2)^(1/2)*Ellipt 
icF(1/2*(1-a^(1/2)/c^(1/2)/x^2)^(1/2)*2^(1/2),2^(1/2)*(d/(d+a^(1/2)*e/c^(1 
/2)))^(1/2))/a^(5/2)/(e*x^2+d)^(1/2)/(-c*x^4+a)^(1/2)
 

Mathematica [F]

\[ \int \frac {\sqrt {d+e x^2}}{\left (a-c x^4\right )^{5/2}} \, dx=\int \frac {\sqrt {d+e x^2}}{\left (a-c x^4\right )^{5/2}} \, dx \] Input:

Integrate[Sqrt[d + e*x^2]/(a - c*x^4)^(5/2),x]
 

Output:

Integrate[Sqrt[d + e*x^2]/(a - c*x^4)^(5/2), x]
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d+e x^2}}{\left (a-c x^4\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 1571

\(\displaystyle \int \frac {\sqrt {d+e x^2}}{\left (a-c x^4\right )^{5/2}}dx\)

Input:

Int[Sqrt[d + e*x^2]/(a - c*x^4)^(5/2),x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 1571
Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> U 
nintegrable[(d + e*x^2)^q*(a + c*x^4)^p, x] /; FreeQ[{a, c, d, e, p, q}, x]
 
Maple [F]

\[\int \frac {\sqrt {e \,x^{2}+d}}{\left (-c \,x^{4}+a \right )^{\frac {5}{2}}}d x\]

Input:

int((e*x^2+d)^(1/2)/(-c*x^4+a)^(5/2),x)
 

Output:

int((e*x^2+d)^(1/2)/(-c*x^4+a)^(5/2),x)
 

Fricas [F]

\[ \int \frac {\sqrt {d+e x^2}}{\left (a-c x^4\right )^{5/2}} \, dx=\int { \frac {\sqrt {e x^{2} + d}}{{\left (-c x^{4} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((e*x^2+d)^(1/2)/(-c*x^4+a)^(5/2),x, algorithm="fricas")
 

Output:

integral(-sqrt(-c*x^4 + a)*sqrt(e*x^2 + d)/(c^3*x^12 - 3*a*c^2*x^8 + 3*a^2 
*c*x^4 - a^3), x)
 

Sympy [F]

\[ \int \frac {\sqrt {d+e x^2}}{\left (a-c x^4\right )^{5/2}} \, dx=\int \frac {\sqrt {d + e x^{2}}}{\left (a - c x^{4}\right )^{\frac {5}{2}}}\, dx \] Input:

integrate((e*x**2+d)**(1/2)/(-c*x**4+a)**(5/2),x)
 

Output:

Integral(sqrt(d + e*x**2)/(a - c*x**4)**(5/2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {d+e x^2}}{\left (a-c x^4\right )^{5/2}} \, dx=\int { \frac {\sqrt {e x^{2} + d}}{{\left (-c x^{4} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((e*x^2+d)^(1/2)/(-c*x^4+a)^(5/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(e*x^2 + d)/(-c*x^4 + a)^(5/2), x)
 

Giac [F]

\[ \int \frac {\sqrt {d+e x^2}}{\left (a-c x^4\right )^{5/2}} \, dx=\int { \frac {\sqrt {e x^{2} + d}}{{\left (-c x^{4} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((e*x^2+d)^(1/2)/(-c*x^4+a)^(5/2),x, algorithm="giac")
 

Output:

integrate(sqrt(e*x^2 + d)/(-c*x^4 + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+e x^2}}{\left (a-c x^4\right )^{5/2}} \, dx=\int \frac {\sqrt {e\,x^2+d}}{{\left (a-c\,x^4\right )}^{5/2}} \,d x \] Input:

int((d + e*x^2)^(1/2)/(a - c*x^4)^(5/2),x)
 

Output:

int((d + e*x^2)^(1/2)/(a - c*x^4)^(5/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {d+e x^2}}{\left (a-c x^4\right )^{5/2}} \, dx=\int \frac {\sqrt {e \,x^{2}+d}\, \sqrt {-c \,x^{4}+a}}{-c^{3} x^{12}+3 a \,c^{2} x^{8}-3 a^{2} c \,x^{4}+a^{3}}d x \] Input:

int((e*x^2+d)^(1/2)/(-c*x^4+a)^(5/2),x)
 

Output:

int((sqrt(d + e*x**2)*sqrt(a - c*x**4))/(a**3 - 3*a**2*c*x**4 + 3*a*c**2*x 
**8 - c**3*x**12),x)