\(\int \frac {d+e x+f x^2+g x^3}{\sqrt {a+b x^2+c x^4}} \, dx\) [102]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 360 \[ \int \frac {d+e x+f x^2+g x^3}{\sqrt {a+b x^2+c x^4}} \, dx=\frac {g \sqrt {a+b x^2+c x^4}}{2 c}+\frac {f x \sqrt {a+b x^2+c x^4}}{\sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {(2 c e-b g) \text {arctanh}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{4 c^{3/2}}-\frac {\sqrt [4]{a} f \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{c^{3/4} \sqrt {a+b x^2+c x^4}}+\frac {\left (\sqrt {c} d+\sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} c^{3/4} \sqrt {a+b x^2+c x^4}} \] Output:

1/2*g*(c*x^4+b*x^2+a)^(1/2)/c+f*x*(c*x^4+b*x^2+a)^(1/2)/c^(1/2)/(a^(1/2)+c 
^(1/2)*x^2)+1/4*(-b*g+2*c*e)*arctanh(1/2*(2*c*x^2+b)/c^(1/2)/(c*x^4+b*x^2+ 
a)^(1/2))/c^(3/2)-a^(1/4)*f*(a^(1/2)+c^(1/2)*x^2)*((c*x^4+b*x^2+a)/(a^(1/2 
)+c^(1/2)*x^2)^2)^(1/2)*EllipticE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*(2- 
b/a^(1/2)/c^(1/2))^(1/2))/c^(3/4)/(c*x^4+b*x^2+a)^(1/2)+1/2*(c^(1/2)*d+a^( 
1/2)*f)*(a^(1/2)+c^(1/2)*x^2)*((c*x^4+b*x^2+a)/(a^(1/2)+c^(1/2)*x^2)^2)^(1 
/2)*InverseJacobiAM(2*arctan(c^(1/4)*x/a^(1/4)),1/2*(2-b/a^(1/2)/c^(1/2))^ 
(1/2))/a^(1/4)/c^(3/4)/(c*x^4+b*x^2+a)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 11.52 (sec) , antiderivative size = 525, normalized size of antiderivative = 1.46 \[ \int \frac {d+e x+f x^2+g x^3}{\sqrt {a+b x^2+c x^4}} \, dx=\frac {i \sqrt {2} \sqrt {c} \left (-b+\sqrt {b^2-4 a c}\right ) f \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )-i \sqrt {2} \sqrt {c} \left (2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) f\right ) \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )+\sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \left (2 \sqrt {c} g \left (a+b x^2+c x^4\right )+(-2 c e+b g) \sqrt {a+b x^2+c x^4} \log \left (b+2 c x^2-2 \sqrt {c} \sqrt {a+b x^2+c x^4}\right )\right )}{4 c^{3/2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \sqrt {a+b x^2+c x^4}} \] Input:

Integrate[(d + e*x + f*x^2 + g*x^3)/Sqrt[a + b*x^2 + c*x^4],x]
 

Output:

(I*Sqrt[2]*Sqrt[c]*(-b + Sqrt[b^2 - 4*a*c])*f*Sqrt[(b - Sqrt[b^2 - 4*a*c] 
+ 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2) 
/(b + Sqrt[b^2 - 4*a*c])]*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 
 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])] - I*Sqrt[ 
2]*Sqrt[c]*(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*f)*Sqrt[(b - Sqrt[b^2 - 4*a*c 
] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^ 
2)/(b + Sqrt[b^2 - 4*a*c])]*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b 
^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])] + Sqrt[ 
c/(b + Sqrt[b^2 - 4*a*c])]*(2*Sqrt[c]*g*(a + b*x^2 + c*x^4) + (-2*c*e + b* 
g)*Sqrt[a + b*x^2 + c*x^4]*Log[b + 2*c*x^2 - 2*Sqrt[c]*Sqrt[a + b*x^2 + c* 
x^4]]))/(4*c^(3/2)*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[a + b*x^2 + c*x^4] 
)
 

Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 363, normalized size of antiderivative = 1.01, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.281, Rules used = {2202, 1511, 27, 1416, 1509, 1576, 1160, 1092, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x+f x^2+g x^3}{\sqrt {a+b x^2+c x^4}} \, dx\)

\(\Big \downarrow \) 2202

\(\displaystyle \int \frac {f x^2+d}{\sqrt {c x^4+b x^2+a}}dx+\int \frac {x \left (g x^2+e\right )}{\sqrt {c x^4+b x^2+a}}dx\)

\(\Big \downarrow \) 1511

\(\displaystyle \left (\frac {\sqrt {a} f}{\sqrt {c}}+d\right ) \int \frac {1}{\sqrt {c x^4+b x^2+a}}dx+\int \frac {x \left (g x^2+e\right )}{\sqrt {c x^4+b x^2+a}}dx-\frac {\sqrt {a} f \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {a} \sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}\)

\(\Big \downarrow \) 27

\(\displaystyle \left (\frac {\sqrt {a} f}{\sqrt {c}}+d\right ) \int \frac {1}{\sqrt {c x^4+b x^2+a}}dx+\int \frac {x \left (g x^2+e\right )}{\sqrt {c x^4+b x^2+a}}dx-\frac {f \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}\)

\(\Big \downarrow \) 1416

\(\displaystyle \int \frac {x \left (g x^2+e\right )}{\sqrt {c x^4+b x^2+a}}dx-\frac {f \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}+\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\frac {\sqrt {a} f}{\sqrt {c}}+d\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}\)

\(\Big \downarrow \) 1509

\(\displaystyle \int \frac {x \left (g x^2+e\right )}{\sqrt {c x^4+b x^2+a}}dx+\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\frac {\sqrt {a} f}{\sqrt {c}}+d\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {f \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{\sqrt {c}}\)

\(\Big \downarrow \) 1576

\(\displaystyle \frac {1}{2} \int \frac {g x^2+e}{\sqrt {c x^4+b x^2+a}}dx^2+\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\frac {\sqrt {a} f}{\sqrt {c}}+d\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {f \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{\sqrt {c}}\)

\(\Big \downarrow \) 1160

\(\displaystyle \frac {1}{2} \left (\frac {(2 c e-b g) \int \frac {1}{\sqrt {c x^4+b x^2+a}}dx^2}{2 c}+\frac {g \sqrt {a+b x^2+c x^4}}{c}\right )+\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\frac {\sqrt {a} f}{\sqrt {c}}+d\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {f \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{\sqrt {c}}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {1}{2} \left (\frac {(2 c e-b g) \int \frac {1}{4 c-x^4}d\frac {2 c x^2+b}{\sqrt {c x^4+b x^2+a}}}{c}+\frac {g \sqrt {a+b x^2+c x^4}}{c}\right )+\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\frac {\sqrt {a} f}{\sqrt {c}}+d\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {f \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{\sqrt {c}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\frac {\sqrt {a} f}{\sqrt {c}}+d\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {f \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{\sqrt {c}}+\frac {1}{2} \left (\frac {(2 c e-b g) \text {arctanh}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{2 c^{3/2}}+\frac {g \sqrt {a+b x^2+c x^4}}{c}\right )\)

Input:

Int[(d + e*x + f*x^2 + g*x^3)/Sqrt[a + b*x^2 + c*x^4],x]
 

Output:

((g*Sqrt[a + b*x^2 + c*x^4])/c + ((2*c*e - b*g)*ArcTanh[(b + 2*c*x^2)/(2*S 
qrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(2*c^(3/2)))/2 - (f*(-((x*Sqrt[a + b*x^2 
 + c*x^4])/(Sqrt[a] + Sqrt[c]*x^2)) + (a^(1/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqr 
t[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/ 
4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(c^(1/4)*Sqrt[a + b*x^2 + c* 
x^4])))/Sqrt[c] + ((d + (Sqrt[a]*f)/Sqrt[c])*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[ 
(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4) 
*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(2*a^(1/4)*c^(1/4)*Sqrt[a + b* 
x^2 + c*x^4])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1160
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol 
] :> Simp[e*((a + b*x + c*x^2)^(p + 1)/(2*c*(p + 1))), x] + Simp[(2*c*d - b 
*e)/(2*c)   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && NeQ[p, -1]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 

rule 1576
Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^( 
p_.), x_Symbol] :> Simp[1/2   Subst[Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x] 
, x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]
 

rule 2202
Int[(Pn_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{n 
 = Expon[Pn, x], k}, Int[Sum[Coeff[Pn, x, 2*k]*x^(2*k), {k, 0, n/2}]*(a + b 
*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pn, x, 2*k + 1]*x^(2*k), {k, 0, (n - 
1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pn, x] 
 &&  !PolyQ[Pn, x^2]
 
Maple [A] (verified)

Time = 2.83 (sec) , antiderivative size = 426, normalized size of antiderivative = 1.18

method result size
elliptic \(\frac {g \sqrt {c \,x^{4}+b \,x^{2}+a}}{2 c}+\frac {d \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}+\frac {\left (e -\frac {b g}{2 c}\right ) \ln \left (\frac {2 c \,x^{2}+b}{\sqrt {c}}+2 \sqrt {c \,x^{4}+b \,x^{2}+a}\right )}{2 \sqrt {c}}-\frac {f a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(426\)
risch \(\frac {g \sqrt {c \,x^{4}+b \,x^{2}+a}}{2 c}-\frac {-\frac {\left (-b g +2 c e \right ) \ln \left (\frac {\frac {b}{2}+c \,x^{2}}{\sqrt {c}}+\sqrt {c \,x^{4}+b \,x^{2}+a}\right )}{2 \sqrt {c}}-\frac {c d \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{2 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}+\frac {c f a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{\sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}}{2 c}\) \(432\)
default \(\frac {d \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}+\frac {e \ln \left (\frac {\frac {b}{2}+c \,x^{2}}{\sqrt {c}}+\sqrt {c \,x^{4}+b \,x^{2}+a}\right )}{2 \sqrt {c}}-\frac {f a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}+g \left (\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{2 c}-\frac {b \ln \left (\frac {\frac {b}{2}+c \,x^{2}}{\sqrt {c}}+\sqrt {c \,x^{4}+b \,x^{2}+a}\right )}{4 c^{\frac {3}{2}}}\right )\) \(454\)

Input:

int((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/2*g*(c*x^4+b*x^2+a)^(1/2)/c+1/4*d*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1 
/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/ 
a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^ 
2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))+1/2*(e-1 
/2*b/c*g)*ln((2*c*x^2+b)/c^(1/2)+2*(c*x^4+b*x^2+a)^(1/2))/c^(1/2)-1/2*f*a* 
2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x 
^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/( 
b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a) 
^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1 
/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a 
/c)^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 376, normalized size of antiderivative = 1.04 \[ \int \frac {d+e x+f x^2+g x^3}{\sqrt {a+b x^2+c x^4}} \, dx=\frac {4 \, \sqrt {\frac {1}{2}} {\left (a c f x \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - a b f x\right )} \sqrt {c} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b}{c}} E(\arcsin \left (\frac {\sqrt {\frac {1}{2}} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b}{c}}}{x}\right )\,|\,\frac {b c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) + 4 \, \sqrt {\frac {1}{2}} {\left ({\left (c^{2} d - a c f\right )} x \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} + {\left (b c d + a b f\right )} x\right )} \sqrt {c} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b}{c}} F(\arcsin \left (\frac {\sqrt {\frac {1}{2}} \sqrt {\frac {c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} - b}{c}}}{x}\right )\,|\,\frac {b c \sqrt {\frac {b^{2} - 4 \, a c}{c^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) - {\left (2 \, a c e - a b g\right )} \sqrt {c} x \log \left (8 \, c^{2} x^{4} + 8 \, b c x^{2} + b^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {c} + 4 \, a c\right ) + 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (a c g x + 2 \, a c f\right )}}{8 \, a c^{2} x} \] Input:

integrate((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")
 

Output:

1/8*(4*sqrt(1/2)*(a*c*f*x*sqrt((b^2 - 4*a*c)/c^2) - a*b*f*x)*sqrt(c)*sqrt( 
(c*sqrt((b^2 - 4*a*c)/c^2) - b)/c)*elliptic_e(arcsin(sqrt(1/2)*sqrt((c*sqr 
t((b^2 - 4*a*c)/c^2) - b)/c)/x), 1/2*(b*c*sqrt((b^2 - 4*a*c)/c^2) + b^2 - 
2*a*c)/(a*c)) + 4*sqrt(1/2)*((c^2*d - a*c*f)*x*sqrt((b^2 - 4*a*c)/c^2) + ( 
b*c*d + a*b*f)*x)*sqrt(c)*sqrt((c*sqrt((b^2 - 4*a*c)/c^2) - b)/c)*elliptic 
_f(arcsin(sqrt(1/2)*sqrt((c*sqrt((b^2 - 4*a*c)/c^2) - b)/c)/x), 1/2*(b*c*s 
qrt((b^2 - 4*a*c)/c^2) + b^2 - 2*a*c)/(a*c)) - (2*a*c*e - a*b*g)*sqrt(c)*x 
*log(8*c^2*x^4 + 8*b*c*x^2 + b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b) 
*sqrt(c) + 4*a*c) + 4*sqrt(c*x^4 + b*x^2 + a)*(a*c*g*x + 2*a*c*f))/(a*c^2* 
x)
 

Sympy [F]

\[ \int \frac {d+e x+f x^2+g x^3}{\sqrt {a+b x^2+c x^4}} \, dx=\int \frac {d + e x + f x^{2} + g x^{3}}{\sqrt {a + b x^{2} + c x^{4}}}\, dx \] Input:

integrate((g*x**3+f*x**2+e*x+d)/(c*x**4+b*x**2+a)**(1/2),x)
 

Output:

Integral((d + e*x + f*x**2 + g*x**3)/sqrt(a + b*x**2 + c*x**4), x)
 

Maxima [F]

\[ \int \frac {d+e x+f x^2+g x^3}{\sqrt {a+b x^2+c x^4}} \, dx=\int { \frac {g x^{3} + f x^{2} + e x + d}{\sqrt {c x^{4} + b x^{2} + a}} \,d x } \] Input:

integrate((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate((g*x^3 + f*x^2 + e*x + d)/sqrt(c*x^4 + b*x^2 + a), x)
 

Giac [F]

\[ \int \frac {d+e x+f x^2+g x^3}{\sqrt {a+b x^2+c x^4}} \, dx=\int { \frac {g x^{3} + f x^{2} + e x + d}{\sqrt {c x^{4} + b x^{2} + a}} \,d x } \] Input:

integrate((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")
 

Output:

integrate((g*x^3 + f*x^2 + e*x + d)/sqrt(c*x^4 + b*x^2 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {d+e x+f x^2+g x^3}{\sqrt {a+b x^2+c x^4}} \, dx=\int \frac {g\,x^3+f\,x^2+e\,x+d}{\sqrt {c\,x^4+b\,x^2+a}} \,d x \] Input:

int((d + e*x + f*x^2 + g*x^3)/(a + b*x^2 + c*x^4)^(1/2),x)
 

Output:

int((d + e*x + f*x^2 + g*x^3)/(a + b*x^2 + c*x^4)^(1/2), x)
 

Reduce [F]

\[ \int \frac {d+e x+f x^2+g x^3}{\sqrt {a+b x^2+c x^4}} \, dx =\text {Too large to display} \] Input:

int((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^(1/2),x)
 

Output:

(4*sqrt(4*a*c - b**2)*sqrt( - 4*a*c + b**2)*atan((4*sqrt(c)*sqrt(a + b*x** 
2 + c*x**4)*a*b*c - sqrt(c)*sqrt(a + b*x**2 + c*x**4)*b**3 + 4*a**2*c**2 - 
 a*b**2*c + 4*a*b*c**2*x**2 - b**3*c*x**2)/(sqrt(4*a*c - b**2)*sqrt( - 4*a 
*c + b**2)*a*c))*a*c*g + 2*sqrt(4*a*c - b**2)*sqrt( - 4*a*c + b**2)*atan(( 
4*sqrt(c)*sqrt(a + b*x**2 + c*x**4)*a*b*c - sqrt(c)*sqrt(a + b*x**2 + c*x* 
*4)*b**3 + 4*a**2*c**2 - a*b**2*c + 4*a*b*c**2*x**2 - b**3*c*x**2)/(sqrt(4 
*a*c - b**2)*sqrt( - 4*a*c + b**2)*a*c))*b**2*g + 16*sqrt(c)*int(sqrt(a + 
b*x**2 + c*x**4)/(a**2 + 2*a*b*x**2 + a*c*x**4 + b**2*x**4 + b*c*x**6),x)* 
a**2*b*c**2*d - 4*sqrt(c)*int(sqrt(a + b*x**2 + c*x**4)/(a**2 + 2*a*b*x**2 
 + a*c*x**4 + b**2*x**4 + b*c*x**6),x)*a*b**3*c*d + 16*sqrt(c)*int((sqrt(a 
 + b*x**2 + c*x**4)*x**5)/(a**2 + 2*a*b*x**2 + a*c*x**4 + b**2*x**4 + b*c* 
x**6),x)*a*b**2*c**2*g - 4*sqrt(c)*int((sqrt(a + b*x**2 + c*x**4)*x**5)/(a 
**2 + 2*a*b*x**2 + a*c*x**4 + b**2*x**4 + b*c*x**6),x)*b**4*c*g + 16*sqrt( 
c)*int((sqrt(a + b*x**2 + c*x**4)*x**4)/(a**2 + 2*a*b*x**2 + a*c*x**4 + b* 
*2*x**4 + b*c*x**6),x)*a*b**2*c**2*f - 4*sqrt(c)*int((sqrt(a + b*x**2 + c* 
x**4)*x**4)/(a**2 + 2*a*b*x**2 + a*c*x**4 + b**2*x**4 + b*c*x**6),x)*b**4* 
c*f + 16*sqrt(c)*int((sqrt(a + b*x**2 + c*x**4)*x**2)/(a**2 + 2*a*b*x**2 + 
 a*c*x**4 + b**2*x**4 + b*c*x**6),x)*a**2*b*c**2*f - 4*sqrt(c)*int((sqrt(a 
 + b*x**2 + c*x**4)*x**2)/(a**2 + 2*a*b*x**2 + a*c*x**4 + b**2*x**4 + b*c* 
x**6),x)*a*b**3*c*f + 16*sqrt(c)*int((sqrt(a + b*x**2 + c*x**4)*x**2)/(...