\(\int \frac {a+b x+c x^2}{d+e x^2+f x^4} \, dx\) [36]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 209 \[ \int \frac {a+b x+c x^2}{d+e x^2+f x^4} \, dx=\frac {\left (c-\frac {c e-2 a f}{\sqrt {e^2-4 d f}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {f} x}{\sqrt {e-\sqrt {e^2-4 d f}}}\right )}{\sqrt {2} \sqrt {f} \sqrt {e-\sqrt {e^2-4 d f}}}+\frac {\left (c+\frac {c e-2 a f}{\sqrt {e^2-4 d f}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {f} x}{\sqrt {e+\sqrt {e^2-4 d f}}}\right )}{\sqrt {2} \sqrt {f} \sqrt {e+\sqrt {e^2-4 d f}}}-\frac {b \text {arctanh}\left (\frac {e+2 f x^2}{\sqrt {e^2-4 d f}}\right )}{\sqrt {e^2-4 d f}} \] Output:

1/2*(c-(-2*a*f+c*e)/(-4*d*f+e^2)^(1/2))*arctan(2^(1/2)*f^(1/2)*x/(e-(-4*d* 
f+e^2)^(1/2))^(1/2))*2^(1/2)/f^(1/2)/(e-(-4*d*f+e^2)^(1/2))^(1/2)+1/2*(c+( 
-2*a*f+c*e)/(-4*d*f+e^2)^(1/2))*arctan(2^(1/2)*f^(1/2)*x/(e+(-4*d*f+e^2)^( 
1/2))^(1/2))*2^(1/2)/f^(1/2)/(e+(-4*d*f+e^2)^(1/2))^(1/2)-b*arctanh((2*f*x 
^2+e)/(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.12 \[ \int \frac {a+b x+c x^2}{d+e x^2+f x^4} \, dx=\frac {\frac {\sqrt {2} \left (2 a f+c \left (-e+\sqrt {e^2-4 d f}\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {f} x}{\sqrt {e-\sqrt {e^2-4 d f}}}\right )}{\sqrt {f} \sqrt {e-\sqrt {e^2-4 d f}}}+\frac {\sqrt {2} \left (-2 a f+c \left (e+\sqrt {e^2-4 d f}\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {f} x}{\sqrt {e+\sqrt {e^2-4 d f}}}\right )}{\sqrt {f} \sqrt {e+\sqrt {e^2-4 d f}}}+b \log \left (-e+\sqrt {e^2-4 d f}-2 f x^2\right )-b \log \left (e+\sqrt {e^2-4 d f}+2 f x^2\right )}{2 \sqrt {e^2-4 d f}} \] Input:

Integrate[(a + b*x + c*x^2)/(d + e*x^2 + f*x^4),x]
 

Output:

((Sqrt[2]*(2*a*f + c*(-e + Sqrt[e^2 - 4*d*f]))*ArcTan[(Sqrt[2]*Sqrt[f]*x)/ 
Sqrt[e - Sqrt[e^2 - 4*d*f]]])/(Sqrt[f]*Sqrt[e - Sqrt[e^2 - 4*d*f]]) + (Sqr 
t[2]*(-2*a*f + c*(e + Sqrt[e^2 - 4*d*f]))*ArcTan[(Sqrt[2]*Sqrt[f]*x)/Sqrt[ 
e + Sqrt[e^2 - 4*d*f]]])/(Sqrt[f]*Sqrt[e + Sqrt[e^2 - 4*d*f]]) + b*Log[-e 
+ Sqrt[e^2 - 4*d*f] - 2*f*x^2] - b*Log[e + Sqrt[e^2 - 4*d*f] + 2*f*x^2])/( 
2*Sqrt[e^2 - 4*d*f])
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {2202, 27, 1432, 1083, 219, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b x+c x^2}{d+e x^2+f x^4} \, dx\)

\(\Big \downarrow \) 2202

\(\displaystyle \int \frac {c x^2+a}{f x^4+e x^2+d}dx+\int \frac {b x}{f x^4+e x^2+d}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {c x^2+a}{f x^4+e x^2+d}dx+b \int \frac {x}{f x^4+e x^2+d}dx\)

\(\Big \downarrow \) 1432

\(\displaystyle \int \frac {c x^2+a}{f x^4+e x^2+d}dx+\frac {1}{2} b \int \frac {1}{f x^4+e x^2+d}dx^2\)

\(\Big \downarrow \) 1083

\(\displaystyle \int \frac {c x^2+a}{f x^4+e x^2+d}dx-b \int \frac {1}{-x^4+e^2-4 d f}d\left (2 f x^2+e\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \int \frac {c x^2+a}{f x^4+e x^2+d}dx-\frac {b \text {arctanh}\left (\frac {e+2 f x^2}{\sqrt {e^2-4 d f}}\right )}{\sqrt {e^2-4 d f}}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {1}{2} \left (c-\frac {c e-2 a f}{\sqrt {e^2-4 d f}}\right ) \int \frac {1}{f x^2+\frac {1}{2} \left (e-\sqrt {e^2-4 d f}\right )}dx+\frac {1}{2} \left (\frac {c e-2 a f}{\sqrt {e^2-4 d f}}+c\right ) \int \frac {1}{f x^2+\frac {1}{2} \left (e+\sqrt {e^2-4 d f}\right )}dx-\frac {b \text {arctanh}\left (\frac {e+2 f x^2}{\sqrt {e^2-4 d f}}\right )}{\sqrt {e^2-4 d f}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\left (c-\frac {c e-2 a f}{\sqrt {e^2-4 d f}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {f} x}{\sqrt {e-\sqrt {e^2-4 d f}}}\right )}{\sqrt {2} \sqrt {f} \sqrt {e-\sqrt {e^2-4 d f}}}+\frac {\left (\frac {c e-2 a f}{\sqrt {e^2-4 d f}}+c\right ) \arctan \left (\frac {\sqrt {2} \sqrt {f} x}{\sqrt {\sqrt {e^2-4 d f}+e}}\right )}{\sqrt {2} \sqrt {f} \sqrt {\sqrt {e^2-4 d f}+e}}-\frac {b \text {arctanh}\left (\frac {e+2 f x^2}{\sqrt {e^2-4 d f}}\right )}{\sqrt {e^2-4 d f}}\)

Input:

Int[(a + b*x + c*x^2)/(d + e*x^2 + f*x^4),x]
 

Output:

((c - (c*e - 2*a*f)/Sqrt[e^2 - 4*d*f])*ArcTan[(Sqrt[2]*Sqrt[f]*x)/Sqrt[e - 
 Sqrt[e^2 - 4*d*f]]])/(Sqrt[2]*Sqrt[f]*Sqrt[e - Sqrt[e^2 - 4*d*f]]) + ((c 
+ (c*e - 2*a*f)/Sqrt[e^2 - 4*d*f])*ArcTan[(Sqrt[2]*Sqrt[f]*x)/Sqrt[e + Sqr 
t[e^2 - 4*d*f]]])/(Sqrt[2]*Sqrt[f]*Sqrt[e + Sqrt[e^2 - 4*d*f]]) - (b*ArcTa 
nh[(e + 2*f*x^2)/Sqrt[e^2 - 4*d*f]])/Sqrt[e^2 - 4*d*f]
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1432
Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/2 
 Subst[Int[(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 2202
Int[(Pn_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{n 
 = Expon[Pn, x], k}, Int[Sum[Coeff[Pn, x, 2*k]*x^(2*k), {k, 0, n/2}]*(a + b 
*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pn, x, 2*k + 1]*x^(2*k), {k, 0, (n - 
1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pn, x] 
 &&  !PolyQ[Pn, x^2]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.12 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.23

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (f \,\textit {\_Z}^{4}+\textit {\_Z}^{2} e +d \right )}{\sum }\frac {\left (c \,\textit {\_R}^{2}+\textit {\_R} b +a \right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} f +\textit {\_R} e}\right )}{2}\) \(48\)
default \(4 f \left (-\frac {\sqrt {-4 d f +e^{2}}\, \left (-\frac {b \ln \left (2 f \,x^{2}+\sqrt {-4 d f +e^{2}}+e \right )}{2}+\frac {\left (\sqrt {-4 d f +e^{2}}\, c -2 a f +c e \right ) \sqrt {2}\, \arctan \left (\frac {f x \sqrt {2}}{\sqrt {\left (e +\sqrt {-4 d f +e^{2}}\right ) f}}\right )}{2 \sqrt {\left (e +\sqrt {-4 d f +e^{2}}\right ) f}}\right )}{4 f \left (4 d f -e^{2}\right )}-\frac {\sqrt {-4 d f +e^{2}}\, \left (\frac {b \ln \left (-2 f \,x^{2}+\sqrt {-4 d f +e^{2}}-e \right )}{2}+\frac {\left (-\sqrt {-4 d f +e^{2}}\, c -2 a f +c e \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {f x \sqrt {2}}{\sqrt {\left (\sqrt {-4 d f +e^{2}}-e \right ) f}}\right )}{2 \sqrt {\left (\sqrt {-4 d f +e^{2}}-e \right ) f}}\right )}{4 f \left (4 d f -e^{2}\right )}\right )\) \(240\)

Input:

int((c*x^2+b*x+a)/(f*x^4+e*x^2+d),x,method=_RETURNVERBOSE)
 

Output:

1/2*sum((_R^2*c+_R*b+a)/(2*_R^3*f+_R*e)*ln(x-_R),_R=RootOf(_Z^4*f+_Z^2*e+d 
))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 26.82 (sec) , antiderivative size = 578003, normalized size of antiderivative = 2765.56 \[ \int \frac {a+b x+c x^2}{d+e x^2+f x^4} \, dx=\text {Too large to display} \] Input:

integrate((c*x^2+b*x+a)/(f*x^4+e*x^2+d),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {a+b x+c x^2}{d+e x^2+f x^4} \, dx=\text {Timed out} \] Input:

integrate((c*x**2+b*x+a)/(f*x**4+e*x**2+d),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {a+b x+c x^2}{d+e x^2+f x^4} \, dx=\int { \frac {c x^{2} + b x + a}{f x^{4} + e x^{2} + d} \,d x } \] Input:

integrate((c*x^2+b*x+a)/(f*x^4+e*x^2+d),x, algorithm="maxima")
 

Output:

integrate((c*x^2 + b*x + a)/(f*x^4 + e*x^2 + d), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1712 vs. \(2 (171) = 342\).

Time = 0.88 (sec) , antiderivative size = 1712, normalized size of antiderivative = 8.19 \[ \int \frac {a+b x+c x^2}{d+e x^2+f x^4} \, dx=\text {Too large to display} \] Input:

integrate((c*x^2+b*x+a)/(f*x^4+e*x^2+d),x, algorithm="giac")
 

Output:

1/2*(e^2*f^2 - 4*d*f^3 - 2*e*f^3 + f^4)*sqrt(e^2 - 4*d*f)*b*log(x^2 + 1/2* 
(e - sqrt(e^2 - 4*d*f))/f)/((e^4 - 8*d*e^2*f - 2*e^3*f + 16*d^2*f^2 + 8*d* 
e*f^2 + e^2*f^2 - 4*d*f^3)*f^2) + 1/4*((sqrt(2)*sqrt(e*f + sqrt(e^2 - 4*d* 
f)*f)*e^4 - 8*sqrt(2)*sqrt(e*f + sqrt(e^2 - 4*d*f)*f)*d*e^2*f - 2*sqrt(2)* 
sqrt(e*f + sqrt(e^2 - 4*d*f)*f)*e^3*f - 2*e^4*f + 16*sqrt(2)*sqrt(e*f + sq 
rt(e^2 - 4*d*f)*f)*d^2*f^2 + 8*sqrt(2)*sqrt(e*f + sqrt(e^2 - 4*d*f)*f)*d*e 
*f^2 + sqrt(2)*sqrt(e*f + sqrt(e^2 - 4*d*f)*f)*e^2*f^2 + 16*d*e^2*f^2 + 2* 
e^3*f^2 - 4*sqrt(2)*sqrt(e*f + sqrt(e^2 - 4*d*f)*f)*d*f^3 - 32*d^2*f^3 - 8 
*d*e*f^3 - sqrt(2)*sqrt(e^2 - 4*d*f)*sqrt(e*f + sqrt(e^2 - 4*d*f)*f)*e^3 + 
 4*sqrt(2)*sqrt(e^2 - 4*d*f)*sqrt(e*f + sqrt(e^2 - 4*d*f)*f)*d*e*f + 2*sqr 
t(2)*sqrt(e^2 - 4*d*f)*sqrt(e*f + sqrt(e^2 - 4*d*f)*f)*e^2*f - sqrt(2)*sqr 
t(e^2 - 4*d*f)*sqrt(e*f + sqrt(e^2 - 4*d*f)*f)*e*f^2 + 2*(e^2 - 4*d*f)*e^2 
*f - 8*(e^2 - 4*d*f)*d*f^2 - 2*(e^2 - 4*d*f)*e*f^2)*a - 2*(2*d*e^2*f^2 - 8 
*d^2*f^3 - sqrt(2)*sqrt(e^2 - 4*d*f)*sqrt(e*f + sqrt(e^2 - 4*d*f)*f)*d*e^2 
 + 4*sqrt(2)*sqrt(e^2 - 4*d*f)*sqrt(e*f + sqrt(e^2 - 4*d*f)*f)*d^2*f + 2*s 
qrt(2)*sqrt(e^2 - 4*d*f)*sqrt(e*f + sqrt(e^2 - 4*d*f)*f)*d*e*f - sqrt(2)*s 
qrt(e^2 - 4*d*f)*sqrt(e*f + sqrt(e^2 - 4*d*f)*f)*d*f^2 - 2*(e^2 - 4*d*f)*d 
*f^2)*c)*arctan(2*sqrt(1/2)*x/sqrt((e + sqrt(e^2 - 4*d*f))/f))/((d*e^4 - 8 
*d^2*e^2*f - 2*d*e^3*f + 16*d^3*f^2 + 8*d^2*e*f^2 + d*e^2*f^2 - 4*d^2*f^3) 
*abs(f)) + 1/4*((sqrt(2)*sqrt(e*f - sqrt(e^2 - 4*d*f)*f)*e^4 - 8*sqrt(2...
 

Mupad [B] (verification not implemented)

Time = 19.01 (sec) , antiderivative size = 3942, normalized size of antiderivative = 18.86 \[ \int \frac {a+b x+c x^2}{d+e x^2+f x^4} \, dx=\text {Too large to display} \] Input:

int((a + b*x + c*x^2)/(d + e*x^2 + f*x^4),x)
 

Output:

symsum(log(a*b^2*f^2 - a^2*c*f^2 + b^3*f^2*x - c^3*d*f - 8*root(16*d*e^4*f 
*z^4 - 128*d^2*e^2*f^2*z^4 + 256*d^3*f^3*z^4 - 16*a*c*d*e^2*f*z^2 - 16*c^2 
*d^2*e*f*z^2 - 8*b^2*d*e^2*f*z^2 - 16*a^2*d*e*f^2*z^2 + 64*a*c*d^2*f^2*z^2 
 + 32*b^2*d^2*f^2*z^2 + 4*c^2*d*e^3*z^2 + 4*a^2*e^3*f*z^2 + 16*b*c^2*d^2*f 
*z + 4*a^2*b*e^2*f*z - 4*b*c^2*d*e^2*z - 16*a^2*b*d*f^2*z - 4*a*b^2*c*d*f 
+ 2*a^2*c^2*d*f - 2*a^3*c*e*f - 2*a*c^3*d*e + b^2*c^2*d*e + a^2*b^2*e*f + 
b^4*d*f + a^2*c^2*e^2 + c^4*d^2 + a^4*f^2, z, k)^3*e^3*f^2*x + a*c^2*e*f - 
 16*root(16*d*e^4*f*z^4 - 128*d^2*e^2*f^2*z^4 + 256*d^3*f^3*z^4 - 16*a*c*d 
*e^2*f*z^2 - 16*c^2*d^2*e*f*z^2 - 8*b^2*d*e^2*f*z^2 - 16*a^2*d*e*f^2*z^2 + 
 64*a*c*d^2*f^2*z^2 + 32*b^2*d^2*f^2*z^2 + 4*c^2*d*e^3*z^2 + 4*a^2*e^3*f*z 
^2 + 16*b*c^2*d^2*f*z + 4*a^2*b*e^2*f*z - 4*b*c^2*d*e^2*z - 16*a^2*b*d*f^2 
*z - 4*a*b^2*c*d*f + 2*a^2*c^2*d*f - 2*a^3*c*e*f - 2*a*c^3*d*e + b^2*c^2*d 
*e + a^2*b^2*e*f + b^4*d*f + a^2*c^2*e^2 + c^4*d^2 + a^4*f^2, z, k)^2*a*d* 
f^3 - 4*root(16*d*e^4*f*z^4 - 128*d^2*e^2*f^2*z^4 + 256*d^3*f^3*z^4 - 16*a 
*c*d*e^2*f*z^2 - 16*c^2*d^2*e*f*z^2 - 8*b^2*d*e^2*f*z^2 - 16*a^2*d*e*f^2*z 
^2 + 64*a*c*d^2*f^2*z^2 + 32*b^2*d^2*f^2*z^2 + 4*c^2*d*e^3*z^2 + 4*a^2*e^3 
*f*z^2 + 16*b*c^2*d^2*f*z + 4*a^2*b*e^2*f*z - 4*b*c^2*d*e^2*z - 16*a^2*b*d 
*f^2*z - 4*a*b^2*c*d*f + 2*a^2*c^2*d*f - 2*a^3*c*e*f - 2*a*c^3*d*e + b^2*c 
^2*d*e + a^2*b^2*e*f + b^4*d*f + a^2*c^2*e^2 + c^4*d^2 + a^4*f^2, z, k)*a^ 
2*f^3*x + 4*root(16*d*e^4*f*z^4 - 128*d^2*e^2*f^2*z^4 + 256*d^3*f^3*z^4...
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 829, normalized size of antiderivative = 3.97 \[ \int \frac {a+b x+c x^2}{d+e x^2+f x^4} \, dx =\text {Too large to display} \] Input:

int((c*x^2+b*x+a)/(f*x^4+e*x^2+d),x)
 

Output:

( - 4*sqrt(2*sqrt(f)*sqrt(d) + e)*sqrt(2*sqrt(f)*sqrt(d) - e)*atan((sqrt(2 
*sqrt(f)*sqrt(d) - e) - 2*sqrt(f)*x)/sqrt(2*sqrt(f)*sqrt(d) + e))*b*d*f + 
2*sqrt(d)*sqrt(2*sqrt(f)*sqrt(d) + e)*atan((sqrt(2*sqrt(f)*sqrt(d) - e) - 
2*sqrt(f)*x)/sqrt(2*sqrt(f)*sqrt(d) + e))*a*e*f - 4*sqrt(d)*sqrt(2*sqrt(f) 
*sqrt(d) + e)*atan((sqrt(2*sqrt(f)*sqrt(d) - e) - 2*sqrt(f)*x)/sqrt(2*sqrt 
(f)*sqrt(d) + e))*c*d*f - 4*sqrt(f)*sqrt(2*sqrt(f)*sqrt(d) + e)*atan((sqrt 
(2*sqrt(f)*sqrt(d) - e) - 2*sqrt(f)*x)/sqrt(2*sqrt(f)*sqrt(d) + e))*a*d*f 
+ 2*sqrt(f)*sqrt(2*sqrt(f)*sqrt(d) + e)*atan((sqrt(2*sqrt(f)*sqrt(d) - e) 
- 2*sqrt(f)*x)/sqrt(2*sqrt(f)*sqrt(d) + e))*c*d*e - 4*sqrt(2*sqrt(f)*sqrt( 
d) + e)*sqrt(2*sqrt(f)*sqrt(d) - e)*atan((sqrt(2*sqrt(f)*sqrt(d) - e) + 2* 
sqrt(f)*x)/sqrt(2*sqrt(f)*sqrt(d) + e))*b*d*f - 2*sqrt(d)*sqrt(2*sqrt(f)*s 
qrt(d) + e)*atan((sqrt(2*sqrt(f)*sqrt(d) - e) + 2*sqrt(f)*x)/sqrt(2*sqrt(f 
)*sqrt(d) + e))*a*e*f + 4*sqrt(d)*sqrt(2*sqrt(f)*sqrt(d) + e)*atan((sqrt(2 
*sqrt(f)*sqrt(d) - e) + 2*sqrt(f)*x)/sqrt(2*sqrt(f)*sqrt(d) + e))*c*d*f + 
4*sqrt(f)*sqrt(2*sqrt(f)*sqrt(d) + e)*atan((sqrt(2*sqrt(f)*sqrt(d) - e) + 
2*sqrt(f)*x)/sqrt(2*sqrt(f)*sqrt(d) + e))*a*d*f - 2*sqrt(f)*sqrt(2*sqrt(f) 
*sqrt(d) + e)*atan((sqrt(2*sqrt(f)*sqrt(d) - e) + 2*sqrt(f)*x)/sqrt(2*sqrt 
(f)*sqrt(d) + e))*c*d*e - sqrt(d)*sqrt(2*sqrt(f)*sqrt(d) - e)*log( - sqrt( 
2*sqrt(f)*sqrt(d) - e)*x + sqrt(d) + sqrt(f)*x**2)*a*e*f + 2*sqrt(d)*sqrt( 
2*sqrt(f)*sqrt(d) - e)*log( - sqrt(2*sqrt(f)*sqrt(d) - e)*x + sqrt(d) +...