\(\int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{(1+x^2+x^4)^2} \, dx\) [45]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 36, antiderivative size = 176 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{\left (1+x^2+x^4\right )^2} \, dx=\frac {x \left (d+f-2 h-(d-2 f+h) x^2\right )}{6 \left (1+x^2+x^4\right )}+\frac {e-2 g+i+(2 e-g-i) x^2}{6 \left (1+x^2+x^4\right )}-\frac {(4 d+f+h) \arctan \left (\frac {1-2 x}{\sqrt {3}}\right )}{12 \sqrt {3}}+\frac {(4 d+f+h) \arctan \left (\frac {1+2 x}{\sqrt {3}}\right )}{12 \sqrt {3}}+\frac {(2 e-g+2 i) \arctan \left (\frac {1+2 x^2}{\sqrt {3}}\right )}{3 \sqrt {3}}+\frac {1}{4} (2 d-f+h) \text {arctanh}\left (\frac {x}{1+x^2}\right ) \] Output:

x*(d+f-2*h-(d-2*f+h)*x^2)/(6*x^4+6*x^2+6)+(e-2*g+i+(2*e-g-i)*x^2)/(6*x^4+6 
*x^2+6)-1/36*(4*d+f+h)*arctan(1/3*(1-2*x)*3^(1/2))*3^(1/2)+1/36*(4*d+f+h)* 
arctan(1/3*(1+2*x)*3^(1/2))*3^(1/2)+1/9*(2*e-g+2*i)*arctan(1/3*(2*x^2+1)*3 
^(1/2))*3^(1/2)+1/4*(2*d-f+h)*arctanh(x/(x^2+1))
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.81 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.38 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{\left (1+x^2+x^4\right )^2} \, dx=\frac {1}{36} \left (\frac {6 \left (e+i+d x+f x-2 h x+2 e x^2-i x^2-d x^3+2 f x^3-h x^3-g \left (2+x^2\right )\right )}{1+x^2+x^4}-\frac {\left (\left (-11 i+\sqrt {3}\right ) d-2 \left (-2 i+\sqrt {3}\right ) f+\left (-5 i+\sqrt {3}\right ) h\right ) \arctan \left (\frac {1}{2} \left (-i+\sqrt {3}\right ) x\right )}{\sqrt {\frac {1}{6} \left (1+i \sqrt {3}\right )}}-\frac {\left (\left (11 i+\sqrt {3}\right ) d-2 \left (2 i+\sqrt {3}\right ) f+\left (5 i+\sqrt {3}\right ) h\right ) \arctan \left (\frac {1}{2} \left (i+\sqrt {3}\right ) x\right )}{\sqrt {\frac {1}{6} \left (1-i \sqrt {3}\right )}}-4 \sqrt {3} (2 e-g+2 i) \arctan \left (\frac {\sqrt {3}}{1+2 x^2}\right )\right ) \] Input:

Integrate[(d + e*x + f*x^2 + g*x^3 + h*x^4 + i*x^5)/(1 + x^2 + x^4)^2,x]
 

Output:

((6*(e + i + d*x + f*x - 2*h*x + 2*e*x^2 - i*x^2 - d*x^3 + 2*f*x^3 - h*x^3 
 - g*(2 + x^2)))/(1 + x^2 + x^4) - (((-11*I + Sqrt[3])*d - 2*(-2*I + Sqrt[ 
3])*f + (-5*I + Sqrt[3])*h)*ArcTan[((-I + Sqrt[3])*x)/2])/Sqrt[(1 + I*Sqrt 
[3])/6] - (((11*I + Sqrt[3])*d - 2*(2*I + Sqrt[3])*f + (5*I + Sqrt[3])*h)* 
ArcTan[((I + Sqrt[3])*x)/2])/Sqrt[(1 - I*Sqrt[3])/6] - 4*Sqrt[3]*(2*e - g 
+ 2*i)*ArcTan[Sqrt[3]/(1 + 2*x^2)])/36
 

Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.18, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.361, Rules used = {2202, 2194, 2191, 27, 1083, 217, 2206, 1483, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{\left (x^4+x^2+1\right )^2} \, dx\)

\(\Big \downarrow \) 2202

\(\displaystyle \int \frac {h x^4+f x^2+d}{\left (x^4+x^2+1\right )^2}dx+\int \frac {x \left (i x^4+g x^2+e\right )}{\left (x^4+x^2+1\right )^2}dx\)

\(\Big \downarrow \) 2194

\(\displaystyle \int \frac {h x^4+f x^2+d}{\left (x^4+x^2+1\right )^2}dx+\frac {1}{2} \int \frac {i x^4+g x^2+e}{\left (x^4+x^2+1\right )^2}dx^2\)

\(\Big \downarrow \) 2191

\(\displaystyle \int \frac {h x^4+f x^2+d}{\left (x^4+x^2+1\right )^2}dx+\frac {1}{2} \left (\frac {1}{3} \int \frac {2 e-g+2 i}{x^4+x^2+1}dx^2+\frac {x^2 (2 e-g-i)+e-2 g+i}{3 \left (x^4+x^2+1\right )}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {h x^4+f x^2+d}{\left (x^4+x^2+1\right )^2}dx+\frac {1}{2} \left (\frac {1}{3} (2 e-g+2 i) \int \frac {1}{x^4+x^2+1}dx^2+\frac {x^2 (2 e-g-i)+e-2 g+i}{3 \left (x^4+x^2+1\right )}\right )\)

\(\Big \downarrow \) 1083

\(\displaystyle \int \frac {h x^4+f x^2+d}{\left (x^4+x^2+1\right )^2}dx+\frac {1}{2} \left (\frac {x^2 (2 e-g-i)+e-2 g+i}{3 \left (x^4+x^2+1\right )}-\frac {2}{3} (2 e-g+2 i) \int \frac {1}{-x^4-3}d\left (2 x^2+1\right )\right )\)

\(\Big \downarrow \) 217

\(\displaystyle \int \frac {h x^4+f x^2+d}{\left (x^4+x^2+1\right )^2}dx+\frac {1}{2} \left (\frac {2 \arctan \left (\frac {2 x^2+1}{\sqrt {3}}\right ) (2 e-g+2 i)}{3 \sqrt {3}}+\frac {x^2 (2 e-g-i)+e-2 g+i}{3 \left (x^4+x^2+1\right )}\right )\)

\(\Big \downarrow \) 2206

\(\displaystyle \frac {1}{6} \int \frac {-\left ((d-2 f+h) x^2\right )+5 d-f+2 h}{x^4+x^2+1}dx+\frac {1}{2} \left (\frac {2 \arctan \left (\frac {2 x^2+1}{\sqrt {3}}\right ) (2 e-g+2 i)}{3 \sqrt {3}}+\frac {x^2 (2 e-g-i)+e-2 g+i}{3 \left (x^4+x^2+1\right )}\right )+\frac {x \left (-\left (x^2 (d-2 f+h)\right )+d+f-2 h\right )}{6 \left (x^4+x^2+1\right )}\)

\(\Big \downarrow \) 1483

\(\displaystyle \frac {1}{6} \left (\frac {1}{2} \int \frac {5 d-f+2 h-3 (2 d-f+h) x}{x^2-x+1}dx+\frac {1}{2} \int \frac {5 d-f+2 h+3 (2 d-f+h) x}{x^2+x+1}dx\right )+\frac {1}{2} \left (\frac {2 \arctan \left (\frac {2 x^2+1}{\sqrt {3}}\right ) (2 e-g+2 i)}{3 \sqrt {3}}+\frac {x^2 (2 e-g-i)+e-2 g+i}{3 \left (x^4+x^2+1\right )}\right )+\frac {x \left (-\left (x^2 (d-2 f+h)\right )+d+f-2 h\right )}{6 \left (x^4+x^2+1\right )}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {1}{6} \left (\frac {1}{2} \left (\frac {1}{2} (4 d+f+h) \int \frac {1}{x^2-x+1}dx-\frac {3}{2} (2 d-f+h) \int -\frac {1-2 x}{x^2-x+1}dx\right )+\frac {1}{2} \left (\frac {1}{2} (4 d+f+h) \int \frac {1}{x^2+x+1}dx+\frac {3}{2} (2 d-f+h) \int \frac {2 x+1}{x^2+x+1}dx\right )\right )+\frac {1}{2} \left (\frac {2 \arctan \left (\frac {2 x^2+1}{\sqrt {3}}\right ) (2 e-g+2 i)}{3 \sqrt {3}}+\frac {x^2 (2 e-g-i)+e-2 g+i}{3 \left (x^4+x^2+1\right )}\right )+\frac {x \left (-\left (x^2 (d-2 f+h)\right )+d+f-2 h\right )}{6 \left (x^4+x^2+1\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{6} \left (\frac {1}{2} \left (\frac {1}{2} (4 d+f+h) \int \frac {1}{x^2-x+1}dx+\frac {3}{2} (2 d-f+h) \int \frac {1-2 x}{x^2-x+1}dx\right )+\frac {1}{2} \left (\frac {1}{2} (4 d+f+h) \int \frac {1}{x^2+x+1}dx+\frac {3}{2} (2 d-f+h) \int \frac {2 x+1}{x^2+x+1}dx\right )\right )+\frac {1}{2} \left (\frac {2 \arctan \left (\frac {2 x^2+1}{\sqrt {3}}\right ) (2 e-g+2 i)}{3 \sqrt {3}}+\frac {x^2 (2 e-g-i)+e-2 g+i}{3 \left (x^4+x^2+1\right )}\right )+\frac {x \left (-\left (x^2 (d-2 f+h)\right )+d+f-2 h\right )}{6 \left (x^4+x^2+1\right )}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {1}{6} \left (\frac {1}{2} \left (\frac {3}{2} (2 d-f+h) \int \frac {1-2 x}{x^2-x+1}dx-(4 d+f+h) \int \frac {1}{-(2 x-1)^2-3}d(2 x-1)\right )+\frac {1}{2} \left (\frac {3}{2} (2 d-f+h) \int \frac {2 x+1}{x^2+x+1}dx-(4 d+f+h) \int \frac {1}{-(2 x+1)^2-3}d(2 x+1)\right )\right )+\frac {1}{2} \left (\frac {2 \arctan \left (\frac {2 x^2+1}{\sqrt {3}}\right ) (2 e-g+2 i)}{3 \sqrt {3}}+\frac {x^2 (2 e-g-i)+e-2 g+i}{3 \left (x^4+x^2+1\right )}\right )+\frac {x \left (-\left (x^2 (d-2 f+h)\right )+d+f-2 h\right )}{6 \left (x^4+x^2+1\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{6} \left (\frac {1}{2} \left (\frac {3}{2} (2 d-f+h) \int \frac {1-2 x}{x^2-x+1}dx+\frac {\arctan \left (\frac {2 x-1}{\sqrt {3}}\right ) (4 d+f+h)}{\sqrt {3}}\right )+\frac {1}{2} \left (\frac {3}{2} (2 d-f+h) \int \frac {2 x+1}{x^2+x+1}dx+\frac {\arctan \left (\frac {2 x+1}{\sqrt {3}}\right ) (4 d+f+h)}{\sqrt {3}}\right )\right )+\frac {1}{2} \left (\frac {2 \arctan \left (\frac {2 x^2+1}{\sqrt {3}}\right ) (2 e-g+2 i)}{3 \sqrt {3}}+\frac {x^2 (2 e-g-i)+e-2 g+i}{3 \left (x^4+x^2+1\right )}\right )+\frac {x \left (-\left (x^2 (d-2 f+h)\right )+d+f-2 h\right )}{6 \left (x^4+x^2+1\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {1}{6} \left (\frac {1}{2} \left (\frac {\arctan \left (\frac {2 x-1}{\sqrt {3}}\right ) (4 d+f+h)}{\sqrt {3}}-\frac {3}{2} \log \left (x^2-x+1\right ) (2 d-f+h)\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {2 x+1}{\sqrt {3}}\right ) (4 d+f+h)}{\sqrt {3}}+\frac {3}{2} \log \left (x^2+x+1\right ) (2 d-f+h)\right )\right )+\frac {1}{2} \left (\frac {2 \arctan \left (\frac {2 x^2+1}{\sqrt {3}}\right ) (2 e-g+2 i)}{3 \sqrt {3}}+\frac {x^2 (2 e-g-i)+e-2 g+i}{3 \left (x^4+x^2+1\right )}\right )+\frac {x \left (-\left (x^2 (d-2 f+h)\right )+d+f-2 h\right )}{6 \left (x^4+x^2+1\right )}\)

Input:

Int[(d + e*x + f*x^2 + g*x^3 + h*x^4 + i*x^5)/(1 + x^2 + x^4)^2,x]
 

Output:

(x*(d + f - 2*h - (d - 2*f + h)*x^2))/(6*(1 + x^2 + x^4)) + ((e - 2*g + i 
+ (2*e - g - i)*x^2)/(3*(1 + x^2 + x^4)) + (2*(2*e - g + 2*i)*ArcTan[(1 + 
2*x^2)/Sqrt[3]])/(3*Sqrt[3]))/2 + ((((4*d + f + h)*ArcTan[(-1 + 2*x)/Sqrt[ 
3]])/Sqrt[3] - (3*(2*d - f + h)*Log[1 - x + x^2])/2)/2 + (((4*d + f + h)*A 
rcTan[(1 + 2*x)/Sqrt[3]])/Sqrt[3] + (3*(2*d - f + h)*Log[1 + x + x^2])/2)/ 
2)/6
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 1483
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}, Simp[1/(2*c*q*r)   In 
t[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Simp[1/(2*c*q*r)   Int[(d*r 
 + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && N 
eQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]
 

rule 2191
Int[(Pq_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = 
PolynomialQuotient[Pq, a + b*x + c*x^2, x], f = Coeff[PolynomialRemainder[P 
q, a + b*x + c*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x + 
c*x^2, x], x, 1]}, Simp[(b*f - 2*a*g + (2*c*f - b*g)*x)*((a + b*x + c*x^2)^ 
(p + 1)/((p + 1)*(b^2 - 4*a*c))), x] + Simp[1/((p + 1)*(b^2 - 4*a*c))   Int 
[(a + b*x + c*x^2)^(p + 1)*ExpandToSum[(p + 1)*(b^2 - 4*a*c)*Q - (2*p + 3)* 
(2*c*f - b*g), x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && NeQ[b^ 
2 - 4*a*c, 0] && LtQ[p, -1]
 

rule 2194
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] : 
> Simp[1/2   Subst[Int[x^((m - 1)/2)*SubstFor[x^2, Pq, x]*(a + b*x + c*x^2) 
^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x^2] && IntegerQ 
[(m - 1)/2]
 

rule 2202
Int[(Pn_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{n 
 = Expon[Pn, x], k}, Int[Sum[Coeff[Pn, x, 2*k]*x^(2*k), {k, 0, n/2}]*(a + b 
*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pn, x, 2*k + 1]*x^(2*k), {k, 0, (n - 
1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pn, x] 
 &&  !PolyQ[Pn, x^2]
 

rule 2206
Int[(Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{d = 
 Coeff[PolynomialRemainder[Px, a + b*x^2 + c*x^4, x], x, 0], e = Coeff[Poly 
nomialRemainder[Px, a + b*x^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^ 
4)^(p + 1)*((a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)/(2*a*(p + 1)*(b 
^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(a + b*x^2 + c 
*x^4)^(p + 1)*ExpandToSum[2*a*(p + 1)*(b^2 - 4*a*c)*PolynomialQuotient[Px, 
a + b*x^2 + c*x^4, x] + b^2*d*(2*p + 3) - 2*a*c*d*(4*p + 5) - a*b*e + c*(4* 
p + 7)*(b*d - 2*a*e)*x^2, x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Px, x 
^2] && Expon[Px, x^2] > 1 && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1]
 
Maple [A] (verified)

Time = 0.33 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.22

method result size
default \(\frac {\left (-\frac {d}{3}-\frac {e}{3}-\frac {g}{3}-\frac {h}{3}+\frac {2 f}{3}+\frac {2 i}{3}\right ) x -\frac {2 d}{3}+\frac {e}{3}-\frac {2 g}{3}+\frac {h}{3}+\frac {f}{3}+\frac {i}{3}}{4 x^{2}+4 x +4}+\frac {\left (6 d -3 f +3 h \right ) \ln \left (x^{2}+x +1\right )}{24}+\frac {\left (2 d -4 e +\frac {f}{2}+2 g +\frac {h}{2}-4 i \right ) \arctan \left (\frac {\left (1+2 x \right ) \sqrt {3}}{3}\right ) \sqrt {3}}{18}-\frac {\left (\frac {d}{3}-\frac {e}{3}-\frac {g}{3}+\frac {h}{3}-\frac {2 f}{3}+\frac {2 i}{3}\right ) x -\frac {2 d}{3}-\frac {e}{3}+\frac {2 g}{3}+\frac {h}{3}+\frac {f}{3}-\frac {i}{3}}{4 \left (x^{2}-x +1\right )}-\frac {\left (6 d -3 f +3 h \right ) \ln \left (x^{2}-x +1\right )}{24}-\frac {\left (-2 d -4 e -\frac {f}{2}+2 g -\frac {h}{2}-4 i \right ) \sqrt {3}\, \arctan \left (\frac {\left (2 x -1\right ) \sqrt {3}}{3}\right )}{18}\) \(214\)
risch \(\text {Expression too large to display}\) \(463209\)

Input:

int((i*x^5+h*x^4+g*x^3+f*x^2+e*x+d)/(x^4+x^2+1)^2,x,method=_RETURNVERBOSE)
 

Output:

1/4*((-1/3*d-1/3*e-1/3*g-1/3*h+2/3*f+2/3*i)*x-2/3*d+1/3*e-2/3*g+1/3*h+1/3* 
f+1/3*i)/(x^2+x+1)+1/24*(6*d-3*f+3*h)*ln(x^2+x+1)+1/18*(2*d-4*e+1/2*f+2*g+ 
1/2*h-4*i)*arctan(1/3*(1+2*x)*3^(1/2))*3^(1/2)-1/4*((1/3*d-1/3*e-1/3*g+1/3 
*h-2/3*f+2/3*i)*x-2/3*d-1/3*e+2/3*g+1/3*h+1/3*f-1/3*i)/(x^2-x+1)-1/24*(6*d 
-3*f+3*h)*ln(x^2-x+1)-1/18*(-2*d-4*e-1/2*f+2*g-1/2*h-4*i)*3^(1/2)*arctan(1 
/3*(2*x-1)*3^(1/2))
 

Fricas [A] (verification not implemented)

Time = 4.27 (sec) , antiderivative size = 279, normalized size of antiderivative = 1.59 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{\left (1+x^2+x^4\right )^2} \, dx=-\frac {12 \, {\left (d - 2 \, f + h\right )} x^{3} - 12 \, {\left (2 \, e - g - i\right )} x^{2} - 2 \, \sqrt {3} {\left ({\left (4 \, d - 8 \, e + f + 4 \, g + h - 8 \, i\right )} x^{4} + {\left (4 \, d - 8 \, e + f + 4 \, g + h - 8 \, i\right )} x^{2} + 4 \, d - 8 \, e + f + 4 \, g + h - 8 \, i\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) - 2 \, \sqrt {3} {\left ({\left (4 \, d + 8 \, e + f - 4 \, g + h + 8 \, i\right )} x^{4} + {\left (4 \, d + 8 \, e + f - 4 \, g + h + 8 \, i\right )} x^{2} + 4 \, d + 8 \, e + f - 4 \, g + h + 8 \, i\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) - 12 \, {\left (d + f - 2 \, h\right )} x - 9 \, {\left ({\left (2 \, d - f + h\right )} x^{4} + {\left (2 \, d - f + h\right )} x^{2} + 2 \, d - f + h\right )} \log \left (x^{2} + x + 1\right ) + 9 \, {\left ({\left (2 \, d - f + h\right )} x^{4} + {\left (2 \, d - f + h\right )} x^{2} + 2 \, d - f + h\right )} \log \left (x^{2} - x + 1\right ) - 12 \, e + 24 \, g - 12 \, i}{72 \, {\left (x^{4} + x^{2} + 1\right )}} \] Input:

integrate((i*x^5+h*x^4+g*x^3+f*x^2+e*x+d)/(x^4+x^2+1)^2,x, algorithm="fric 
as")
 

Output:

-1/72*(12*(d - 2*f + h)*x^3 - 12*(2*e - g - i)*x^2 - 2*sqrt(3)*((4*d - 8*e 
 + f + 4*g + h - 8*i)*x^4 + (4*d - 8*e + f + 4*g + h - 8*i)*x^2 + 4*d - 8* 
e + f + 4*g + h - 8*i)*arctan(1/3*sqrt(3)*(2*x + 1)) - 2*sqrt(3)*((4*d + 8 
*e + f - 4*g + h + 8*i)*x^4 + (4*d + 8*e + f - 4*g + h + 8*i)*x^2 + 4*d + 
8*e + f - 4*g + h + 8*i)*arctan(1/3*sqrt(3)*(2*x - 1)) - 12*(d + f - 2*h)* 
x - 9*((2*d - f + h)*x^4 + (2*d - f + h)*x^2 + 2*d - f + h)*log(x^2 + x + 
1) + 9*((2*d - f + h)*x^4 + (2*d - f + h)*x^2 + 2*d - f + h)*log(x^2 - x + 
 1) - 12*e + 24*g - 12*i)/(x^4 + x^2 + 1)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{\left (1+x^2+x^4\right )^2} \, dx=\text {Timed out} \] Input:

integrate((i*x**5+h*x**4+g*x**3+f*x**2+e*x+d)/(x**4+x**2+1)**2,x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.88 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{\left (1+x^2+x^4\right )^2} \, dx=\frac {1}{36} \, \sqrt {3} {\left (4 \, d - 8 \, e + f + 4 \, g + h - 8 \, i\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) + \frac {1}{36} \, \sqrt {3} {\left (4 \, d + 8 \, e + f - 4 \, g + h + 8 \, i\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + \frac {1}{8} \, {\left (2 \, d - f + h\right )} \log \left (x^{2} + x + 1\right ) - \frac {1}{8} \, {\left (2 \, d - f + h\right )} \log \left (x^{2} - x + 1\right ) - \frac {{\left (d - 2 \, f + h\right )} x^{3} - {\left (2 \, e - g - i\right )} x^{2} - {\left (d + f - 2 \, h\right )} x - e + 2 \, g - i}{6 \, {\left (x^{4} + x^{2} + 1\right )}} \] Input:

integrate((i*x^5+h*x^4+g*x^3+f*x^2+e*x+d)/(x^4+x^2+1)^2,x, algorithm="maxi 
ma")
 

Output:

1/36*sqrt(3)*(4*d - 8*e + f + 4*g + h - 8*i)*arctan(1/3*sqrt(3)*(2*x + 1)) 
 + 1/36*sqrt(3)*(4*d + 8*e + f - 4*g + h + 8*i)*arctan(1/3*sqrt(3)*(2*x - 
1)) + 1/8*(2*d - f + h)*log(x^2 + x + 1) - 1/8*(2*d - f + h)*log(x^2 - x + 
 1) - 1/6*((d - 2*f + h)*x^3 - (2*e - g - i)*x^2 - (d + f - 2*h)*x - e + 2 
*g - i)/(x^4 + x^2 + 1)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 165, normalized size of antiderivative = 0.94 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{\left (1+x^2+x^4\right )^2} \, dx=\frac {1}{36} \, \sqrt {3} {\left (4 \, d - 8 \, e + f + 4 \, g + h - 8 \, i\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) + \frac {1}{36} \, \sqrt {3} {\left (4 \, d + 8 \, e + f - 4 \, g + h + 8 \, i\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + \frac {1}{8} \, {\left (2 \, d - f + h\right )} \log \left (x^{2} + x + 1\right ) - \frac {1}{8} \, {\left (2 \, d - f + h\right )} \log \left (x^{2} - x + 1\right ) - \frac {d x^{3} - 2 \, f x^{3} + h x^{3} - 2 \, e x^{2} + g x^{2} + i x^{2} - d x - f x + 2 \, h x - e + 2 \, g - i}{6 \, {\left (x^{4} + x^{2} + 1\right )}} \] Input:

integrate((i*x^5+h*x^4+g*x^3+f*x^2+e*x+d)/(x^4+x^2+1)^2,x, algorithm="giac 
")
 

Output:

1/36*sqrt(3)*(4*d - 8*e + f + 4*g + h - 8*i)*arctan(1/3*sqrt(3)*(2*x + 1)) 
 + 1/36*sqrt(3)*(4*d + 8*e + f - 4*g + h + 8*i)*arctan(1/3*sqrt(3)*(2*x - 
1)) + 1/8*(2*d - f + h)*log(x^2 + x + 1) - 1/8*(2*d - f + h)*log(x^2 - x + 
 1) - 1/6*(d*x^3 - 2*f*x^3 + h*x^3 - 2*e*x^2 + g*x^2 + i*x^2 - d*x - f*x + 
 2*h*x - e + 2*g - i)/(x^4 + x^2 + 1)
 

Mupad [B] (verification not implemented)

Time = 28.06 (sec) , antiderivative size = 1894, normalized size of antiderivative = 10.76 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{\left (1+x^2+x^4\right )^2} \, dx=\text {Too large to display} \] Input:

int((d + e*x + f*x^2 + g*x^3 + h*x^4 + i*x^5)/(x^2 + x^4 + 1)^2,x)
 

Output:

(e/6 - g/3 + i/6 + x*(d/6 + f/6 - h/3) - x^3*(d/6 - f/3 + h/6) - x^2*(g/6 
- e/3 + i/6))/(x^2 + x^4 + 1) - log(60*d*g - 153*d*f - 120*d*e + 24*e*f + 
135*d*h - 120*d*i - 48*e*h - 12*f*g - 81*f*h + 24*f*i + 24*g*h - 48*h*i + 
3^(1/2)*d^2*90i + 3^(1/2)*f^2*9i + 3^(1/2)*h^2*18i - 198*d^2*x - 36*f^2*x 
- 45*h^2*x + 126*d^2 + 45*f^2 + 36*h^2 + 3^(1/2)*d*e*56i - 3^(1/2)*d*f*63i 
 - 3^(1/2)*d*g*28i - 3^(1/2)*e*f*40i + 3^(1/2)*d*h*81i + 3^(1/2)*d*i*56i + 
 3^(1/2)*e*h*32i + 3^(1/2)*f*g*20i - 3^(1/2)*f*h*27i - 3^(1/2)*f*i*40i - 3 
^(1/2)*g*h*16i + 3^(1/2)*h*i*32i - 24*d*e*x + 171*d*f*x + 12*d*g*x + 48*e* 
f*x - 189*d*h*x - 24*d*i*x - 24*e*h*x - 24*f*g*x + 81*f*h*x + 48*f*i*x + 1 
2*g*h*x - 24*h*i*x + 3^(1/2)*d^2*x*18i + 3^(1/2)*f^2*x*18i + 3^(1/2)*h^2*x 
*9i - 3^(1/2)*d*f*x*45i + 3^(1/2)*d*g*x*44i + 3^(1/2)*e*f*x*32i + 3^(1/2)* 
d*h*x*27i - 3^(1/2)*d*i*x*88i - 3^(1/2)*e*h*x*40i - 3^(1/2)*f*g*x*16i - 3^ 
(1/2)*f*h*x*27i + 3^(1/2)*f*i*x*32i + 3^(1/2)*g*h*x*20i - 3^(1/2)*h*i*x*40 
i - 3^(1/2)*d*e*x*88i)*(d/4 - f/8 + h/8 + (3^(1/2)*d*1i)/18 + (3^(1/2)*e*1 
i)/9 + (3^(1/2)*f*1i)/72 - (3^(1/2)*g*1i)/18 + (3^(1/2)*h*1i)/72 + (3^(1/2 
)*i*1i)/9) - log(120*d*e - 153*d*f - 60*d*g - 24*e*f + 135*d*h + 120*d*i + 
 48*e*h + 12*f*g - 81*f*h - 24*f*i - 24*g*h + 48*h*i - 3^(1/2)*d^2*90i - 3 
^(1/2)*f^2*9i - 3^(1/2)*h^2*18i + 198*d^2*x + 36*f^2*x + 45*h^2*x + 126*d^ 
2 + 45*f^2 + 36*h^2 + 3^(1/2)*d*e*56i + 3^(1/2)*d*f*63i - 3^(1/2)*d*g*28i 
- 3^(1/2)*e*f*40i - 3^(1/2)*d*h*81i + 3^(1/2)*d*i*56i + 3^(1/2)*e*h*32i...
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 955, normalized size of antiderivative = 5.43 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{\left (1+x^2+x^4\right )^2} \, dx =\text {Too large to display} \] Input:

int((i*x^5+h*x^4+g*x^3+f*x^2+e*x+d)/(x^4+x^2+1)^2,x)
 

Output:

(8*sqrt(3)*atan((2*x - 1)/sqrt(3))*d*x**4 + 8*sqrt(3)*atan((2*x - 1)/sqrt( 
3))*d*x**2 + 8*sqrt(3)*atan((2*x - 1)/sqrt(3))*d + 16*sqrt(3)*atan((2*x - 
1)/sqrt(3))*e*x**4 + 16*sqrt(3)*atan((2*x - 1)/sqrt(3))*e*x**2 + 16*sqrt(3 
)*atan((2*x - 1)/sqrt(3))*e + 2*sqrt(3)*atan((2*x - 1)/sqrt(3))*f*x**4 + 2 
*sqrt(3)*atan((2*x - 1)/sqrt(3))*f*x**2 + 2*sqrt(3)*atan((2*x - 1)/sqrt(3) 
)*f - 8*sqrt(3)*atan((2*x - 1)/sqrt(3))*g*x**4 - 8*sqrt(3)*atan((2*x - 1)/ 
sqrt(3))*g*x**2 - 8*sqrt(3)*atan((2*x - 1)/sqrt(3))*g + 2*sqrt(3)*atan((2* 
x - 1)/sqrt(3))*h*x**4 + 2*sqrt(3)*atan((2*x - 1)/sqrt(3))*h*x**2 + 2*sqrt 
(3)*atan((2*x - 1)/sqrt(3))*h + 16*sqrt(3)*atan((2*x - 1)/sqrt(3))*i*x**4 
+ 16*sqrt(3)*atan((2*x - 1)/sqrt(3))*i*x**2 + 16*sqrt(3)*atan((2*x - 1)/sq 
rt(3))*i + 8*sqrt(3)*atan((2*x + 1)/sqrt(3))*d*x**4 + 8*sqrt(3)*atan((2*x 
+ 1)/sqrt(3))*d*x**2 + 8*sqrt(3)*atan((2*x + 1)/sqrt(3))*d - 16*sqrt(3)*at 
an((2*x + 1)/sqrt(3))*e*x**4 - 16*sqrt(3)*atan((2*x + 1)/sqrt(3))*e*x**2 - 
 16*sqrt(3)*atan((2*x + 1)/sqrt(3))*e + 2*sqrt(3)*atan((2*x + 1)/sqrt(3))* 
f*x**4 + 2*sqrt(3)*atan((2*x + 1)/sqrt(3))*f*x**2 + 2*sqrt(3)*atan((2*x + 
1)/sqrt(3))*f + 8*sqrt(3)*atan((2*x + 1)/sqrt(3))*g*x**4 + 8*sqrt(3)*atan( 
(2*x + 1)/sqrt(3))*g*x**2 + 8*sqrt(3)*atan((2*x + 1)/sqrt(3))*g + 2*sqrt(3 
)*atan((2*x + 1)/sqrt(3))*h*x**4 + 2*sqrt(3)*atan((2*x + 1)/sqrt(3))*h*x** 
2 + 2*sqrt(3)*atan((2*x + 1)/sqrt(3))*h - 16*sqrt(3)*atan((2*x + 1)/sqrt(3 
))*i*x**4 - 16*sqrt(3)*atan((2*x + 1)/sqrt(3))*i*x**2 - 16*sqrt(3)*atan...