\(\int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx\) [49]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 40, antiderivative size = 321 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\frac {h x}{c}+\frac {i x^2}{2 c}+\frac {\left (c f-b h+\frac {2 c^2 d+b^2 h-c (b f+2 a h)}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (c f-b h-\frac {2 c^2 d-b c f+b^2 h-2 a c h}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {\left (2 c^2 e-b c g+b^2 i-2 a c i\right ) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 c^2 \sqrt {b^2-4 a c}}+\frac {(c g-b i) \log \left (a+b x^2+c x^4\right )}{4 c^2} \] Output:

h*x/c+1/2*i*x^2/c+1/2*(c*f-b*h+(2*c^2*d+b^2*h-c*(2*a*h+b*f))/(-4*a*c+b^2)^ 
(1/2))*arctan(2^(1/2)*c^(1/2)*x/(b-(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)/c^(3 
/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+1/2*(c*f-b*h-(-2*a*c*h+b^2*h-b*c*f+2*c^2* 
d)/(-4*a*c+b^2)^(1/2))*arctan(2^(1/2)*c^(1/2)*x/(b+(-4*a*c+b^2)^(1/2))^(1/ 
2))*2^(1/2)/c^(3/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)-1/2*(-2*a*c*i+b^2*i-b*c*g 
+2*c^2*e)*arctanh((2*c*x^2+b)/(-4*a*c+b^2)^(1/2))/c^2/(-4*a*c+b^2)^(1/2)+1 
/4*(-b*i+c*g)*ln(c*x^4+b*x^2+a)/c^2
 

Mathematica [A] (verified)

Time = 0.72 (sec) , antiderivative size = 441, normalized size of antiderivative = 1.37 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\frac {4 c h x+2 c i x^2+\frac {2 \sqrt {2} \sqrt {c} \left (2 c^2 d+b \left (b-\sqrt {b^2-4 a c}\right ) h+c \left (-b f+\sqrt {b^2-4 a c} f-2 a h\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {2 \sqrt {2} \sqrt {c} \left (2 c^2 d+b \left (b+\sqrt {b^2-4 a c}\right ) h-c \left (b f+\sqrt {b^2-4 a c} f+2 a h\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {\left (2 c^2 e+b \left (b-\sqrt {b^2-4 a c}\right ) i+c \left (-b g+\sqrt {b^2-4 a c} g-2 a i\right )\right ) \log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )}{\sqrt {b^2-4 a c}}-\frac {\left (2 c^2 e+b \left (b+\sqrt {b^2-4 a c}\right ) i-c \left (b g+\sqrt {b^2-4 a c} g+2 a i\right )\right ) \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\sqrt {b^2-4 a c}}}{4 c^2} \] Input:

Integrate[(d + e*x + f*x^2 + g*x^3 + h*x^4 + i*x^5)/(a + b*x^2 + c*x^4),x]
 

Output:

(4*c*h*x + 2*c*i*x^2 + (2*Sqrt[2]*Sqrt[c]*(2*c^2*d + b*(b - Sqrt[b^2 - 4*a 
*c])*h + c*(-(b*f) + Sqrt[b^2 - 4*a*c]*f - 2*a*h))*ArcTan[(Sqrt[2]*Sqrt[c] 
*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4 
*a*c]]) - (2*Sqrt[2]*Sqrt[c]*(2*c^2*d + b*(b + Sqrt[b^2 - 4*a*c])*h - c*(b 
*f + Sqrt[b^2 - 4*a*c]*f + 2*a*h))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqr 
t[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + ((2*c^ 
2*e + b*(b - Sqrt[b^2 - 4*a*c])*i + c*(-(b*g) + Sqrt[b^2 - 4*a*c]*g - 2*a* 
i))*Log[-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2])/Sqrt[b^2 - 4*a*c] - ((2*c^2*e + 
 b*(b + Sqrt[b^2 - 4*a*c])*i - c*(b*g + Sqrt[b^2 - 4*a*c]*g + 2*a*i))*Log[ 
b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/Sqrt[b^2 - 4*a*c])/(4*c^2)
 

Rubi [A] (verified)

Time = 1.05 (sec) , antiderivative size = 321, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {2202, 2194, 2188, 2009, 2205, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx\)

\(\Big \downarrow \) 2202

\(\displaystyle \int \frac {h x^4+f x^2+d}{c x^4+b x^2+a}dx+\int \frac {x \left (i x^4+g x^2+e\right )}{c x^4+b x^2+a}dx\)

\(\Big \downarrow \) 2194

\(\displaystyle \int \frac {h x^4+f x^2+d}{c x^4+b x^2+a}dx+\frac {1}{2} \int \frac {i x^4+g x^2+e}{c x^4+b x^2+a}dx^2\)

\(\Big \downarrow \) 2188

\(\displaystyle \int \frac {h x^4+f x^2+d}{c x^4+b x^2+a}dx+\frac {1}{2} \int \left (\frac {i}{c}+\frac {(c g-b i) x^2+c e-a i}{c \left (c x^4+b x^2+a\right )}\right )dx^2\)

\(\Big \downarrow \) 2009

\(\displaystyle \int \frac {h x^4+f x^2+d}{c x^4+b x^2+a}dx+\frac {1}{2} \left (-\frac {\text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right ) \left (-2 a c i+b^2 i-b c g+2 c^2 e\right )}{c^2 \sqrt {b^2-4 a c}}+\frac {(c g-b i) \log \left (a+b x^2+c x^4\right )}{2 c^2}+\frac {i x^2}{c}\right )\)

\(\Big \downarrow \) 2205

\(\displaystyle \int \left (\frac {h}{c}+\frac {(c f-b h) x^2+c d-a h}{c \left (c x^4+b x^2+a\right )}\right )dx+\frac {1}{2} \left (-\frac {\text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right ) \left (-2 a c i+b^2 i-b c g+2 c^2 e\right )}{c^2 \sqrt {b^2-4 a c}}+\frac {(c g-b i) \log \left (a+b x^2+c x^4\right )}{2 c^2}+\frac {i x^2}{c}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right ) \left (\frac {-c (2 a h+b f)+b^2 h+2 c^2 d}{\sqrt {b^2-4 a c}}-b h+c f\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right ) \left (-\frac {-2 a c h+b^2 h-b c f+2 c^2 d}{\sqrt {b^2-4 a c}}-b h+c f\right )}{\sqrt {2} c^{3/2} \sqrt {\sqrt {b^2-4 a c}+b}}+\frac {1}{2} \left (-\frac {\text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right ) \left (-2 a c i+b^2 i-b c g+2 c^2 e\right )}{c^2 \sqrt {b^2-4 a c}}+\frac {(c g-b i) \log \left (a+b x^2+c x^4\right )}{2 c^2}+\frac {i x^2}{c}\right )+\frac {h x}{c}\)

Input:

Int[(d + e*x + f*x^2 + g*x^3 + h*x^4 + i*x^5)/(a + b*x^2 + c*x^4),x]
 

Output:

(h*x)/c + ((c*f - b*h + (2*c^2*d + b^2*h - c*(b*f + 2*a*h))/Sqrt[b^2 - 4*a 
*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^( 
3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((c*f - b*h - (2*c^2*d - b*c*f + b^2*h 
 - 2*a*c*h)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^ 
2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + ((i*x^2)/c - 
 ((2*c^2*e - b*c*g + b^2*i - 2*a*c*i)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a 
*c]])/(c^2*Sqrt[b^2 - 4*a*c]) + ((c*g - b*i)*Log[a + b*x^2 + c*x^4])/(2*c^ 
2))/2
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2188
Int[(Pq_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand 
Integrand[Pq*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c}, x] && PolyQ[Pq 
, x] && IGtQ[p, -2]
 

rule 2194
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] : 
> Simp[1/2   Subst[Int[x^((m - 1)/2)*SubstFor[x^2, Pq, x]*(a + b*x + c*x^2) 
^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x^2] && IntegerQ 
[(m - 1)/2]
 

rule 2202
Int[(Pn_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{n 
 = Expon[Pn, x], k}, Int[Sum[Coeff[Pn, x, 2*k]*x^(2*k), {k, 0, n/2}]*(a + b 
*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pn, x, 2*k + 1]*x^(2*k), {k, 0, (n - 
1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pn, x] 
 &&  !PolyQ[Pn, x^2]
 

rule 2205
Int[(Px_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandInte 
grand[Px/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c}, x] && PolyQ[Px, x^ 
2] && Expon[Px, x^2] > 1
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.12 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.31

method result size
risch \(\frac {h x}{c}+\frac {i \,x^{2}}{2 c}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (\left (-b i +c g \right ) \textit {\_R}^{3}+\left (-b h +c f \right ) \textit {\_R}^{2}+\left (-a i +c e \right ) \textit {\_R} -a h +c d \right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} c +\textit {\_R} b}}{2 c}\) \(99\)
default \(\frac {h x +\frac {1}{2} i \,x^{2}}{c}+\frac {\sqrt {-4 a c +b^{2}}\, \left (\frac {\left (\sqrt {-4 a c +b^{2}}\, b i -\sqrt {-4 a c +b^{2}}\, g c -2 a c i +b^{2} i -b c g +2 e \,c^{2}\right ) \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )}{4 c}+\frac {\left (\sqrt {-4 a c +b^{2}}\, b h -\sqrt {-4 a c +b^{2}}\, f c -2 a c h +b^{2} h -b c f +2 d \,c^{2}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{c \left (4 a c -b^{2}\right )}+\frac {\sqrt {-4 a c +b^{2}}\, \left (-\frac {\left (-\sqrt {-4 a c +b^{2}}\, b i +\sqrt {-4 a c +b^{2}}\, g c -2 a c i +b^{2} i -b c g +2 e \,c^{2}\right ) \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )}{4 c}+\frac {\left (-\sqrt {-4 a c +b^{2}}\, b h +\sqrt {-4 a c +b^{2}}\, f c -2 a c h +b^{2} h -b c f +2 d \,c^{2}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{c \left (4 a c -b^{2}\right )}\) \(408\)

Input:

int((i*x^5+h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOS 
E)
 

Output:

h*x/c+1/2*i*x^2/c+1/2/c*sum(((-b*i+c*g)*_R^3+(-b*h+c*f)*_R^2+(-a*i+c*e)*_R 
-a*h+c*d)/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\text {Timed out} \] Input:

integrate((i*x^5+h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x, algorithm="fr 
icas")
 

Output:

Timed out
                                                                                    
                                                                                    
 

Sympy [F(-1)]

Timed out. \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\text {Timed out} \] Input:

integrate((i*x**5+h*x**4+g*x**3+f*x**2+e*x+d)/(c*x**4+b*x**2+a),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\int { \frac {i x^{5} + h x^{4} + g x^{3} + f x^{2} + e x + d}{c x^{4} + b x^{2} + a} \,d x } \] Input:

integrate((i*x^5+h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x, algorithm="ma 
xima")
 

Output:

1/2*(i*x^2 + 2*h*x)/c - integrate(-((c*g - b*i)*x^3 + (c*f - b*h)*x^2 + c* 
d - a*h + (c*e - a*i)*x)/(c*x^4 + b*x^2 + a), x)/c
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5944 vs. \(2 (277) = 554\).

Time = 0.94 (sec) , antiderivative size = 5944, normalized size of antiderivative = 18.52 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\text {Too large to display} \] Input:

integrate((i*x^5+h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x, algorithm="gi 
ac")
 

Output:

1/4*(c*g - b*i)*log(abs(c*x^4 + b*x^2 + a))/c^2 + 1/2*(c*i*x^2 + 2*c*h*x)/ 
c^2 + 1/8*((2*b^4*c^3 - 16*a*b^2*c^4 + 32*a^2*c^5 - sqrt(2)*sqrt(b^2 - 4*a 
*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sq 
rt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt 
(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^2 - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b* 
c + sqrt(b^2 - 4*a*c)*c)*a^2*c^3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
sqrt(b^2 - 4*a*c)*c)*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b 
^2 - 4*a*c)*c)*b^2*c^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 
 4*a*c)*c)*a*c^4 - 2*(b^2 - 4*a*c)*b^2*c^3 + 8*(b^2 - 4*a*c)*a*c^4)*c^2*f 
- (2*b^5*c^2 - 16*a*b^3*c^3 + 32*a^2*b*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqr 
t(b*c + sqrt(b^2 - 4*a*c)*c)*b^5 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
sqrt(b^2 - 4*a*c)*c)*a*b^3*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt 
(b^2 - 4*a*c)*c)*b^4*c - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 
- 4*a*c)*c)*a^2*b*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 
4*a*c)*c)*a*b^2*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a* 
c)*c)*b^3*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c 
)*a*b*c^3 - 2*(b^2 - 4*a*c)*b^3*c^2 + 8*(b^2 - 4*a*c)*a*b*c^3)*c^2*h + 2*( 
sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c^3 - 8*sqrt(2)*sqrt(b*c + sqr 
t(b^2 - 4*a*c)*c)*a*b^2*c^4 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^ 
3*c^4 - 2*b^4*c^4 + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^5 ...
 

Mupad [B] (verification not implemented)

Time = 19.79 (sec) , antiderivative size = 11383, normalized size of antiderivative = 35.46 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx=\text {Too large to display} \] Input:

int((d + e*x + f*x^2 + g*x^3 + h*x^4 + i*x^5)/(a + b*x^2 + c*x^4),x)
 

Output:

symsum(log((x*(c^4*e^3 - a^3*c*i^3 + c^4*d^2*g + b^4*e*i^2 + a^2*b^2*i^3 + 
 b^2*c^2*e*g^2 + 3*a^2*c^2*e*i^2 + a^2*c^2*g*h^2 + 2*b^2*c^2*e^2*i - a^2*c 
^2*g^2*i - 2*c^4*d*e*f - a*b*c^2*g^3 + a*c^3*e*g^2 + b*c^3*e*f^2 - a*c^3*f 
^2*g - 2*b*c^3*e^2*g - 3*a*c^3*e^2*i - b*c^3*d^2*i + b^3*c*e*h^2 - a*b^3*g 
*i^2 - 2*a*b*c^2*e*h^2 - 3*a*b^2*c*e*i^2 - a*b^2*c*g*h^2 + 2*a*b^2*c*g^2*i 
 + a^2*b*c*h^2*i - 2*b^2*c^2*e*f*h - 2*a^2*c^2*f*h*i + 2*b*c^3*d*e*h + 2*a 
*c^3*d*f*i - 2*a*c^3*d*g*h + 2*a*c^3*e*f*h - 2*b^3*c*e*g*i + 2*a*b*c^2*e*g 
*i + 2*a*b*c^2*f*g*h))/c^2 - (a*c^3*f^3 - c^4*d*e^2 + c^4*d^2*f - b^4*d*i^ 
2 - b^2*c^2*d*g^2 - a^2*c^2*d*i^2 + a^2*c^2*f*h^2 - a^2*c^2*g^2*h - a^2*b^ 
2*h*i^2 - a^2*b*c*h^3 + a*c^3*d*g^2 - b*c^3*d*f^2 + a*c^3*e^2*h - b*c^3*d^ 
2*h - b^3*c*d*h^2 + a*b^3*f*i^2 + a^3*c*h*i^2 + 2*a*b*c^2*d*h^2 + a*b*c^2* 
f*g^2 + 3*a*b^2*c*d*i^2 - 2*a*b*c^2*f^2*h + a*b^2*c*f*h^2 - 2*a^2*b*c*f*i^ 
2 - 2*b^2*c^2*d*e*i + 2*b^2*c^2*d*f*h - 2*a^2*c^2*e*h*i + 2*a^2*c^2*f*g*i 
+ 2*b*c^3*d*e*g + 2*a*c^3*d*e*i - 2*a*c^3*d*f*h - 2*a*c^3*e*f*g + 2*b^3*c* 
d*g*i - 4*a*b*c^2*d*g*i + 2*a*b*c^2*e*f*i - 2*a*b^2*c*f*g*i + 2*a^2*b*c*g* 
h*i)/c^2 - root(128*a^2*b^2*c^5*z^4 - 16*a*b^4*c^4*z^4 - 256*a^3*c^6*z^4 + 
 128*a^2*b^3*c^3*i*z^3 - 128*a^2*b^2*c^4*g*z^3 - 256*a^3*b*c^4*i*z^3 - 16* 
a*b^5*c^2*i*z^3 + 16*a*b^4*c^3*g*z^3 + 256*a^3*c^5*g*z^3 + 160*a^3*b*c^3*g 
*i*z^2 + 8*a*b^4*c^2*f*h*z^2 + 8*a*b^4*c^2*e*i*z^2 + 32*a^2*b*c^4*e*g*z^2 
+ 32*a^2*b*c^4*d*h*z^2 - 8*a*b^3*c^3*e*g*z^2 - 8*a*b^3*c^3*d*h*z^2 + 16...
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 2036, normalized size of antiderivative = 6.34 \[ \int \frac {d+e x+f x^2+g x^3+h x^4+i x^5}{a+b x^2+c x^4} \, dx =\text {Too large to display} \] Input:

int((i*x^5+h*x^4+g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a),x)
 

Output:

(4*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sq 
rt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**2*c*i - 
2*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sqr 
t(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b**2*i + 2 
*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sqrt 
(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b*c*g - 4*s 
qrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sqrt(c 
)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*c**2*e + 2*sq 
rt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sq 
rt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b*c*h - 4*sqrt(a)*sqrt(2*sqrt(c)*s 
qrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c 
)*sqrt(a) + b))*a*c**2*f + 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqr 
t(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b*c** 
2*d + 4*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - 
 b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**2*c*h - 2*sqrt(c)*sqrt( 
2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sq 
rt(2*sqrt(c)*sqrt(a) + b))*a*b**2*h + 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b 
)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) 
+ b))*a*b*c*f - 4*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c) 
*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*c**2*d + 4*...