\(\int \frac {a d+a e x+(b d+a f) x^2+b e x^3+(c d+b f) x^4+c e x^5+c f x^6}{(a+b x^2+c x^4)^2} \, dx\) [61]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 63, antiderivative size = 211 \[ \int \frac {a d+a e x+(b d+a f) x^2+b e x^3+(c d+b f) x^4+c e x^5+c f x^6}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {\left (f+\frac {2 c d-b f}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (f-\frac {2 c d-b f}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c}} \] Output:

1/2*(f+(-b*f+2*c*d)/(-4*a*c+b^2)^(1/2))*arctan(2^(1/2)*c^(1/2)*x/(b-(-4*a* 
c+b^2)^(1/2))^(1/2))*2^(1/2)/c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+1/2*(f-( 
-b*f+2*c*d)/(-4*a*c+b^2)^(1/2))*arctan(2^(1/2)*c^(1/2)*x/(b+(-4*a*c+b^2)^( 
1/2))^(1/2))*2^(1/2)/c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)-e*arctanh((2*c*x 
^2+b)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.11 \[ \int \frac {a d+a e x+(b d+a f) x^2+b e x^3+(c d+b f) x^4+c e x^5+c f x^6}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {\frac {\sqrt {2} \left (2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) f\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \left (-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) f\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \sqrt {b+\sqrt {b^2-4 a c}}}+e \log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )-e \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{2 \sqrt {b^2-4 a c}} \] Input:

Integrate[(a*d + a*e*x + (b*d + a*f)*x^2 + b*e*x^3 + (c*d + b*f)*x^4 + c*e 
*x^5 + c*f*x^6)/(a + b*x^2 + c*x^4)^2,x]
 

Output:

((Sqrt[2]*(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*f)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/ 
Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqr 
t[2]*(-2*c*d + (b + Sqrt[b^2 - 4*a*c])*f)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[ 
b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + e*Log[-b 
+ Sqrt[b^2 - 4*a*c] - 2*c*x^2] - e*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/( 
2*Sqrt[b^2 - 4*a*c])
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.127, Rules used = {2019, 2202, 27, 1432, 1083, 219, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 (a f+b d)+a d+a e x+x^4 (b f+c d)+b e x^3+c e x^5+c f x^6}{\left (a+b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 2019

\(\displaystyle \int \frac {d+e x+f x^2}{a+b x^2+c x^4}dx\)

\(\Big \downarrow \) 2202

\(\displaystyle \int \frac {f x^2+d}{c x^4+b x^2+a}dx+\int \frac {e x}{c x^4+b x^2+a}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {f x^2+d}{c x^4+b x^2+a}dx+e \int \frac {x}{c x^4+b x^2+a}dx\)

\(\Big \downarrow \) 1432

\(\displaystyle \int \frac {f x^2+d}{c x^4+b x^2+a}dx+\frac {1}{2} e \int \frac {1}{c x^4+b x^2+a}dx^2\)

\(\Big \downarrow \) 1083

\(\displaystyle \int \frac {f x^2+d}{c x^4+b x^2+a}dx-e \int \frac {1}{-x^4+b^2-4 a c}d\left (2 c x^2+b\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \int \frac {f x^2+d}{c x^4+b x^2+a}dx-\frac {e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c}}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {1}{2} \left (\frac {2 c d-b f}{\sqrt {b^2-4 a c}}+f\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} \left (f-\frac {2 c d-b f}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx-\frac {e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right ) \left (\frac {2 c d-b f}{\sqrt {b^2-4 a c}}+f\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right ) \left (f-\frac {2 c d-b f}{\sqrt {b^2-4 a c}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}-\frac {e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\sqrt {b^2-4 a c}}\)

Input:

Int[(a*d + a*e*x + (b*d + a*f)*x^2 + b*e*x^3 + (c*d + b*f)*x^4 + c*e*x^5 + 
 c*f*x^6)/(a + b*x^2 + c*x^4)^2,x]
 

Output:

((f + (2*c*d - b*f)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - 
 Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((f 
- (2*c*d - b*f)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqr 
t[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - (e*ArcTa 
nh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/Sqrt[b^2 - 4*a*c]
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1432
Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/2 
 Subst[Int[(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 2019
Int[(u_.)*(Px_)^(p_.)*(Qx_)^(q_.), x_Symbol] :> Int[u*PolynomialQuotient[Px 
, Qx, x]^p*Qx^(p + q), x] /; FreeQ[q, x] && PolyQ[Px, x] && PolyQ[Qx, x] && 
 EqQ[PolynomialRemainder[Px, Qx, x], 0] && IntegerQ[p] && LtQ[p*q, 0]
 

rule 2202
Int[(Pn_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{n 
 = Expon[Pn, x], k}, Int[Sum[Coeff[Pn, x, 2*k]*x^(2*k), {k, 0, n/2}]*(a + b 
*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pn, x, 2*k + 1]*x^(2*k), {k, 0, (n - 
1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pn, x] 
 &&  !PolyQ[Pn, x^2]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.08 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.23

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (\textit {\_R}^{2} f +\textit {\_R} e +d \right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} c +\textit {\_R} b}\right )}{2}\) \(48\)
default \(4 c \left (-\frac {\sqrt {-4 a c +b^{2}}\, \left (-\frac {e \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )}{2}+\frac {\left (\sqrt {-4 a c +b^{2}}\, f +b f -2 c d \right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 c \left (4 a c -b^{2}\right )}-\frac {\sqrt {-4 a c +b^{2}}\, \left (\frac {e \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )}{2}+\frac {\left (-\sqrt {-4 a c +b^{2}}\, f +b f -2 c d \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 c \left (4 a c -b^{2}\right )}\right )\) \(240\)

Input:

int((a*d+a*e*x+(a*f+b*d)*x^2+b*e*x^3+(b*f+c*d)*x^4+c*e*x^5+c*f*x^6)/(c*x^4 
+b*x^2+a)^2,x,method=_RETURNVERBOSE)
 

Output:

1/2*sum((_R^2*f+_R*e+d)/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a 
))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 17.13 (sec) , antiderivative size = 723401, normalized size of antiderivative = 3428.44 \[ \int \frac {a d+a e x+(b d+a f) x^2+b e x^3+(c d+b f) x^4+c e x^5+c f x^6}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \] Input:

integrate((a*d+a*e*x+(a*f+b*d)*x^2+b*e*x^3+(b*f+c*d)*x^4+c*e*x^5+c*f*x^6)/ 
(c*x^4+b*x^2+a)^2,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {a d+a e x+(b d+a f) x^2+b e x^3+(c d+b f) x^4+c e x^5+c f x^6}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \] Input:

integrate((a*d+a*e*x+(a*f+b*d)*x**2+b*e*x**3+(b*f+c*d)*x**4+c*e*x**5+c*f*x 
**6)/(c*x**4+b*x**2+a)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {a d+a e x+(b d+a f) x^2+b e x^3+(c d+b f) x^4+c e x^5+c f x^6}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {c f x^{6} + c e x^{5} + b e x^{3} + {\left (c d + b f\right )} x^{4} + a e x + {\left (b d + a f\right )} x^{2} + a d}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \] Input:

integrate((a*d+a*e*x+(a*f+b*d)*x^2+b*e*x^3+(b*f+c*d)*x^4+c*e*x^5+c*f*x^6)/ 
(c*x^4+b*x^2+a)^2,x, algorithm="maxima")
 

Output:

integrate((c*f*x^6 + c*e*x^5 + b*e*x^3 + (c*d + b*f)*x^4 + a*e*x + (b*d + 
a*f)*x^2 + a*d)/(c*x^4 + b*x^2 + a)^2, x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1618 vs. \(2 (173) = 346\).

Time = 0.75 (sec) , antiderivative size = 1618, normalized size of antiderivative = 7.67 \[ \int \frac {a d+a e x+(b d+a f) x^2+b e x^3+(c d+b f) x^4+c e x^5+c f x^6}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \] Input:

integrate((a*d+a*e*x+(a*f+b*d)*x^2+b*e*x^3+(b*f+c*d)*x^4+c*e*x^5+c*f*x^6)/ 
(c*x^4+b*x^2+a)^2,x, algorithm="giac")
 

Output:

-1/2*(b^2*c^2 - 4*a*c^3 - 2*b*c^3 + c^4)*sqrt(b^2 - 4*a*c)*e*log(x^2 + 1/2 
*(b + sqrt(b^2 - 4*a*c))/c)/((b^4 - 8*a*b^2*c - 2*b^3*c + 16*a^2*c^2 + 8*a 
*b*c^2 + b^2*c^2 - 4*a*c^3)*c^2) + 1/2*(b^2*c^2 - 4*a*c^3 - 2*b*c^3 + c^4) 
*sqrt(b^2 - 4*a*c)*e*log(x^2 + 1/2*(b - sqrt(b^2 - 4*a*c))/c)/((b^4 - 8*a* 
b^2*c - 2*b^3*c + 16*a^2*c^2 + 8*a*b*c^2 + b^2*c^2 - 4*a*c^3)*c^2) + 1/4*( 
(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4 - 8*sqrt(2)*sqrt(b*c + sqrt(b 
^2 - 4*a*c)*c)*a*b^2*c - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c - 
 2*b^4*c + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^2 + 8*sqrt(2)* 
sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^2 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4* 
a*c)*c)*b^2*c^2 + 16*a*b^2*c^2 + 2*b^3*c^2 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2 
 - 4*a*c)*c)*a*c^3 - 32*a^2*c^3 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sq 
rt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
 sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt( 
b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4* 
a*c)*c)*b*c^2 + 2*(b^2 - 4*a*c)*b^2*c - 8*(b^2 - 4*a*c)*a*c^2 - 2*(b^2 - 4 
*a*c)*b*c^2)*d - 2*(2*a*b^2*c^2 - 8*a^2*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sq 
rt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c 
 + sqrt(b^2 - 4*a*c)*c)*a^2*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqr 
t(b^2 - 4*a*c)*c)*a*b*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 
4*a*c)*c)*a*c^2 - 2*(b^2 - 4*a*c)*a*c^2)*f)*arctan(2*sqrt(1/2)*x/sqrt((...
 

Mupad [B] (verification not implemented)

Time = 1.24 (sec) , antiderivative size = 3942, normalized size of antiderivative = 18.68 \[ \int \frac {a d+a e x+(b d+a f) x^2+b e x^3+(c d+b f) x^4+c e x^5+c f x^6}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \] Input:

int((a*d + x^2*(b*d + a*f) + x^4*(c*d + b*f) + a*e*x + b*e*x^3 + c*e*x^5 + 
 c*f*x^6)/(a + b*x^2 + c*x^4)^2,x)
 

Output:

symsum(log(c^2*d*e^2 - c^2*d^2*f + c^2*e^3*x - a*c*f^3 - 8*root(16*a*b^4*c 
*z^4 - 128*a^2*b^2*c^2*z^4 + 256*a^3*c^3*z^4 - 16*a*b^2*c*d*f*z^2 + 64*a^2 
*c^2*d*f*z^2 - 16*a^2*b*c*f^2*z^2 - 8*a*b^2*c*e^2*z^2 - 16*a*b*c^2*d^2*z^2 
 + 32*a^2*c^2*e^2*z^2 + 4*b^3*c*d^2*z^2 + 4*a*b^3*f^2*z^2 + 16*a^2*c*e*f^2 
*z + 4*b^2*c*d^2*e*z - 4*a*b^2*e*f^2*z - 16*a*c^2*d^2*e*z - 4*a*c*d*e^2*f 
+ 2*a*c*d^2*f^2 - 2*b*c*d^3*f - 2*a*b*d*f^3 + b*c*d^2*e^2 + a*b*e^2*f^2 + 
a*c*e^4 + b^2*d^2*f^2 + c^2*d^4 + a^2*f^4, z, k)^3*b^3*c^2*x + b*c*d*f^2 - 
 16*root(16*a*b^4*c*z^4 - 128*a^2*b^2*c^2*z^4 + 256*a^3*c^3*z^4 - 16*a*b^2 
*c*d*f*z^2 + 64*a^2*c^2*d*f*z^2 - 16*a^2*b*c*f^2*z^2 - 8*a*b^2*c*e^2*z^2 - 
 16*a*b*c^2*d^2*z^2 + 32*a^2*c^2*e^2*z^2 + 4*b^3*c*d^2*z^2 + 4*a*b^3*f^2*z 
^2 + 16*a^2*c*e*f^2*z + 4*b^2*c*d^2*e*z - 4*a*b^2*e*f^2*z - 16*a*c^2*d^2*e 
*z - 4*a*c*d*e^2*f + 2*a*c*d^2*f^2 - 2*b*c*d^3*f - 2*a*b*d*f^3 + b*c*d^2*e 
^2 + a*b*e^2*f^2 + a*c*e^4 + b^2*d^2*f^2 + c^2*d^4 + a^2*f^4, z, k)^2*a*c^ 
3*d - 4*root(16*a*b^4*c*z^4 - 128*a^2*b^2*c^2*z^4 + 256*a^3*c^3*z^4 - 16*a 
*b^2*c*d*f*z^2 + 64*a^2*c^2*d*f*z^2 - 16*a^2*b*c*f^2*z^2 - 8*a*b^2*c*e^2*z 
^2 - 16*a*b*c^2*d^2*z^2 + 32*a^2*c^2*e^2*z^2 + 4*b^3*c*d^2*z^2 + 4*a*b^3*f 
^2*z^2 + 16*a^2*c*e*f^2*z + 4*b^2*c*d^2*e*z - 4*a*b^2*e*f^2*z - 16*a*c^2*d 
^2*e*z - 4*a*c*d*e^2*f + 2*a*c*d^2*f^2 - 2*b*c*d^3*f - 2*a*b*d*f^3 + b*c*d 
^2*e^2 + a*b*e^2*f^2 + a*c*e^4 + b^2*d^2*f^2 + c^2*d^4 + a^2*f^4, z, k)*c^ 
3*d^2*x + 4*root(16*a*b^4*c*z^4 - 128*a^2*b^2*c^2*z^4 + 256*a^3*c^3*z^4...
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 829, normalized size of antiderivative = 3.93 \[ \int \frac {a d+a e x+(b d+a f) x^2+b e x^3+(c d+b f) x^4+c e x^5+c f x^6}{\left (a+b x^2+c x^4\right )^2} \, dx =\text {Too large to display} \] Input:

int((a*d+a*e*x+(a*f+b*d)*x^2+b*e*x^3+(b*f+c*d)*x^4+c*e*x^5+c*f*x^6)/(c*x^4 
+b*x^2+a)^2,x)
 

Output:

( - 4*sqrt(2*sqrt(c)*sqrt(a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2 
*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*c*e - 
4*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 
2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*c*f + 2*sqrt(a)*sqrt(2*sqrt(c) 
*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt 
(c)*sqrt(a) + b))*b*c*d + 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt 
(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b*f 
- 4*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) 
- 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*c*d - 4*sqrt(2*sqrt(c)*sqrt( 
a) + b)*sqrt(2*sqrt(c)*sqrt(a) - b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) + 2* 
sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*c*e + 4*sqrt(a)*sqrt(2*sqrt(c)*s 
qrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c 
)*sqrt(a) + b))*a*c*f - 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2 
*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b*c*d - 
2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) + 
2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b*f + 4*sqrt(c)*sqrt(2*sqrt(c) 
*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt 
(c)*sqrt(a) + b))*a*c*d + 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) - b)*log( - sqr 
t(2*sqrt(c)*sqrt(a) - b)*x + sqrt(a) + sqrt(c)*x**2)*a*c*f - sqrt(a)*sqrt( 
2*sqrt(c)*sqrt(a) - b)*log( - sqrt(2*sqrt(c)*sqrt(a) - b)*x + sqrt(a) +...