\(\int \frac {1+\frac {\sqrt {b} (a+b-\sqrt {b} \sqrt {a+b}) x^2}{(a+b) (-\sqrt {b}+\sqrt {a+b})}}{(1-x^2) \sqrt {a+b+b x^4}} \, dx\) [86]

Optimal result
Mathematica [C] (verified)
Rubi [B] (warning: unable to verify)
Maple [C] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 72, antiderivative size = 198 \[ \int \frac {1+\frac {\sqrt {b} \left (a+b-\sqrt {b} \sqrt {a+b}\right ) x^2}{(a+b) \left (-\sqrt {b}+\sqrt {a+b}\right )}}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=\frac {\left (1+\frac {\sqrt {b}}{\sqrt {a+b}}\right ) \text {arctanh}\left (\frac {\sqrt {a+2 b} x}{\sqrt {a+b+b x^4}}\right )}{2 \sqrt {a+2 b}}+\frac {\left (1-\frac {\sqrt {b}}{\sqrt {a+b}}\right ) \left (\sqrt [4]{a+b}+\frac {\sqrt {b} x^2}{\sqrt [4]{a+b}}\right ) \sqrt {\frac {a+b+b x^4}{\left (\sqrt {a+b}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b}+\sqrt {a+b}\right )^2}{4 \sqrt {b} \sqrt {a+b}},2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{b} \sqrt {a+b+b x^4}} \] Output:

1/2*(1+b^(1/2)/(a+b)^(1/2))*arctanh((a+2*b)^(1/2)*x/(b*x^4+a+b)^(1/2))/(a+ 
2*b)^(1/2)+1/4*(1-b^(1/2)/(a+b)^(1/2))*((a+b)^(1/4)+b^(1/2)*x^2/(a+b)^(1/4 
))*((b*x^4+a+b)/((a+b)^(1/2)+b^(1/2)*x^2)^2)^(1/2)*EllipticPi(sin(2*arctan 
(b^(1/4)*x/(a+b)^(1/4))),1/4*(b^(1/2)+(a+b)^(1/2))^2/b^(1/2)/(a+b)^(1/2),1 
/2*2^(1/2))/b^(1/4)/(b*x^4+a+b)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 12.68 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.05 \[ \int \frac {1+\frac {\sqrt {b} \left (a+b-\sqrt {b} \sqrt {a+b}\right ) x^2}{(a+b) \left (-\sqrt {b}+\sqrt {a+b}\right )}}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=\frac {\left (\frac {a+b+b x^4}{a+b}\right )^{3/2} \left (-i b^{3/4} \left (a+b-\sqrt {b} \sqrt {a+b}\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {\sqrt {b}}{\sqrt {-a-b}}} x\right ),-1\right )+\sqrt [4]{-1} a \sqrt {-\frac {\sqrt {b}}{\sqrt {-a-b}}} (a+b)^{3/4} \operatorname {EllipticPi}\left (\frac {i \sqrt {a+b}}{\sqrt {b}},\arcsin \left (\frac {(-1)^{3/4} \sqrt [4]{b} x}{\sqrt [4]{a+b}}\right ),-1\right )\right )}{\sqrt {-\frac {\sqrt {b}}{\sqrt {-a-b}}} \sqrt [4]{b} \left (\sqrt {b}-\sqrt {a+b}\right ) \left (a+b+b x^4\right )^{3/2}} \] Input:

Integrate[(1 + (Sqrt[b]*(a + b - Sqrt[b]*Sqrt[a + b])*x^2)/((a + b)*(-Sqrt 
[b] + Sqrt[a + b])))/((1 - x^2)*Sqrt[a + b + b*x^4]),x]
 

Output:

(((a + b + b*x^4)/(a + b))^(3/2)*((-I)*b^(3/4)*(a + b - Sqrt[b]*Sqrt[a + b 
])*EllipticF[I*ArcSinh[Sqrt[-(Sqrt[b]/Sqrt[-a - b])]*x], -1] + (-1)^(1/4)* 
a*Sqrt[-(Sqrt[b]/Sqrt[-a - b])]*(a + b)^(3/4)*EllipticPi[(I*Sqrt[a + b])/S 
qrt[b], ArcSin[((-1)^(3/4)*b^(1/4)*x)/(a + b)^(1/4)], -1]))/(Sqrt[-(Sqrt[b 
]/Sqrt[-a - b])]*b^(1/4)*(Sqrt[b] - Sqrt[a + b])*(a + b + b*x^4)^(3/2))
 

Rubi [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(615\) vs. \(2(198)=396\).

Time = 1.31 (sec) , antiderivative size = 615, normalized size of antiderivative = 3.11, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {2225, 761, 2223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\frac {\sqrt {b} x^2 \left (-\sqrt {b} \sqrt {a+b}+a+b\right )}{(a+b) \left (\sqrt {a+b}-\sqrt {b}\right )}+1}{\left (1-x^2\right ) \sqrt {a+b x^4+b}} \, dx\)

\(\Big \downarrow \) 2225

\(\displaystyle \frac {2 \sqrt {b} \left (-\sqrt {b} \sqrt {a+b}+a+b\right ) \int \frac {1}{\sqrt {b x^4+a+b}}dx}{-2 b \sqrt {a+b}+2 a \sqrt {b}-a \sqrt {a+b}+2 b^{3/2}}-\frac {a \sqrt {a+b} \int \frac {\frac {\sqrt {b} \left (a+b-\sqrt {b} \sqrt {a+b}\right ) x^2}{(a+b) \left (\sqrt {b}-\sqrt {a+b}\right )}+1}{\left (1-x^2\right ) \sqrt {b x^4+a+b}}dx}{-2 b \sqrt {a+b}+2 a \sqrt {b}-a \sqrt {a+b}+2 b^{3/2}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {\sqrt [4]{b} \sqrt [4]{a+b} \left (-\sqrt {b} \sqrt {a+b}+a+b\right ) \left (\frac {\sqrt {b} x^2}{\sqrt {a+b}}+1\right ) \sqrt {\frac {a+b x^4+b}{(a+b) \left (\frac {\sqrt {b} x^2}{\sqrt {a+b}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b}}\right ),\frac {1}{2}\right )}{\left (-2 b \sqrt {a+b}+2 a \sqrt {b}-a \sqrt {a+b}+2 b^{3/2}\right ) \sqrt {a+b x^4+b}}-\frac {a \sqrt {a+b} \int \frac {\frac {\sqrt {b} \left (a+b-\sqrt {b} \sqrt {a+b}\right ) x^2}{(a+b) \left (\sqrt {b}-\sqrt {a+b}\right )}+1}{\left (1-x^2\right ) \sqrt {b x^4+a+b}}dx}{-2 b \sqrt {a+b}+2 a \sqrt {b}-a \sqrt {a+b}+2 b^{3/2}}\)

\(\Big \downarrow \) 2223

\(\displaystyle \frac {\sqrt [4]{b} \sqrt [4]{a+b} \left (-\sqrt {b} \sqrt {a+b}+a+b\right ) \left (\frac {\sqrt {b} x^2}{\sqrt {a+b}}+1\right ) \sqrt {\frac {a+b x^4+b}{(a+b) \left (\frac {\sqrt {b} x^2}{\sqrt {a+b}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b}}\right ),\frac {1}{2}\right )}{\left (-2 b \sqrt {a+b}+2 a \sqrt {b}-a \sqrt {a+b}+2 b^{3/2}\right ) \sqrt {a+b x^4+b}}-\frac {a \sqrt {a+b} \left (\frac {\left (\frac {\sqrt {b} \left (-\sqrt {b} \sqrt {a+b}+a+b\right )}{(a+b) \left (\sqrt {b}-\sqrt {a+b}\right )}+1\right ) \text {arctanh}\left (\frac {x \sqrt {a+2 b}}{\sqrt {a+b x^4+b}}\right )}{2 \sqrt {a+2 b}}-\frac {a \left (\frac {\sqrt {b} x^2 \left (-\sqrt {b} \sqrt {a+b}+a+b\right )}{(a+b) \left (\sqrt {b}-\sqrt {a+b}\right )}+1\right ) \sqrt {\frac {a+b x^4+b}{(a+b) \left (\frac {\sqrt {b} x^2 \left (-\sqrt {b} \sqrt {a+b}+a+b\right )}{(a+b) \left (\sqrt {b}-\sqrt {a+b}\right )}+1\right )^2}} \operatorname {EllipticPi}\left (\frac {a^2+8 b a+8 b^2-\sqrt {b} \sqrt {a+b} (4 a+8 b)}{4 \sqrt {b} \left (2 b^{3/2}-2 \sqrt {a+b} b+2 a \sqrt {b}-a \sqrt {a+b}\right )},2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {a+b-\sqrt {b} \sqrt {a+b}} x}{\sqrt {a+b} \sqrt {\sqrt {b}-\sqrt {a+b}}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{b} \sqrt {\sqrt {b}-\sqrt {a+b}} \sqrt {-\sqrt {b} \sqrt {a+b}+a+b} \sqrt {a+b x^4+b}}\right )}{-2 b \sqrt {a+b}+2 a \sqrt {b}-a \sqrt {a+b}+2 b^{3/2}}\)

Input:

Int[(1 + (Sqrt[b]*(a + b - Sqrt[b]*Sqrt[a + b])*x^2)/((a + b)*(-Sqrt[b] + 
Sqrt[a + b])))/((1 - x^2)*Sqrt[a + b + b*x^4]),x]
 

Output:

(b^(1/4)*(a + b)^(1/4)*(a + b - Sqrt[b]*Sqrt[a + b])*(1 + (Sqrt[b]*x^2)/Sq 
rt[a + b])*Sqrt[(a + b + b*x^4)/((a + b)*(1 + (Sqrt[b]*x^2)/Sqrt[a + b])^2 
)]*EllipticF[2*ArcTan[(b^(1/4)*x)/(a + b)^(1/4)], 1/2])/((2*a*Sqrt[b] + 2* 
b^(3/2) - a*Sqrt[a + b] - 2*b*Sqrt[a + b])*Sqrt[a + b + b*x^4]) - (a*Sqrt[ 
a + b]*(((1 + (Sqrt[b]*(a + b - Sqrt[b]*Sqrt[a + b]))/((a + b)*(Sqrt[b] - 
Sqrt[a + b])))*ArcTanh[(Sqrt[a + 2*b]*x)/Sqrt[a + b + b*x^4]])/(2*Sqrt[a + 
 2*b]) - (a*(1 + (Sqrt[b]*(a + b - Sqrt[b]*Sqrt[a + b])*x^2)/((a + b)*(Sqr 
t[b] - Sqrt[a + b])))*Sqrt[(a + b + b*x^4)/((a + b)*(1 + (Sqrt[b]*(a + b - 
 Sqrt[b]*Sqrt[a + b])*x^2)/((a + b)*(Sqrt[b] - Sqrt[a + b])))^2)]*Elliptic 
Pi[(a^2 + 8*a*b + 8*b^2 - Sqrt[b]*Sqrt[a + b]*(4*a + 8*b))/(4*Sqrt[b]*(2*a 
*Sqrt[b] + 2*b^(3/2) - a*Sqrt[a + b] - 2*b*Sqrt[a + b])), 2*ArcTan[(b^(1/4 
)*Sqrt[a + b - Sqrt[b]*Sqrt[a + b]]*x)/(Sqrt[a + b]*Sqrt[Sqrt[b] - Sqrt[a 
+ b]])], 1/2])/(4*b^(1/4)*Sqrt[Sqrt[b] - Sqrt[a + b]]*Sqrt[a + b - Sqrt[b] 
*Sqrt[a + b]]*Sqrt[a + b + b*x^4])))/(2*a*Sqrt[b] + 2*b^(3/2) - a*Sqrt[a + 
 b] - 2*b*Sqrt[a + b])
 

Defintions of rubi rules used

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 2223
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTanh[Rt[(-c)* 
(d/e) - a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[(-c)*(d/e) - a*(e/d), 2] 
)), x] + Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^ 
2)]/(4*d*e*q*Sqrt[a + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*Arc 
Tan[q*x], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0 
] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && NegQ[c*(d/e) + a*(e 
/d)]
 

rule 2225
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> Simp[2*A*(B/(B*d + A*e))   Int[1/Sqrt[a + c*x^4], x], x] - S 
imp[(B*d - A*e)/(B*d + A*e)   Int[(A - B*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]) 
, x], x] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c 
/a] && EqQ[c*A^2 - a*B^2, 0] && NegQ[B/A]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 3.96 (sec) , antiderivative size = 588, normalized size of antiderivative = 2.97

method result size
elliptic \(\frac {\left (1+\frac {\sqrt {b}\, \left (\sqrt {b}\, \sqrt {a +b}-a -b \right ) x^{2}}{\left (a +b \right ) \left (\sqrt {b}-\sqrt {a +b}\right )}\right ) \sqrt {\left (b \,x^{4}+a +b \right ) b \left (a +b \right )}\, \left (-\frac {b \sqrt {1-\frac {i \sqrt {b}\, \left (a +b \right )^{\frac {3}{2}} x^{2}}{a^{2}+2 b a +b^{2}}}\, \sqrt {1+\frac {i \sqrt {b}\, \left (a +b \right )^{\frac {3}{2}} x^{2}}{a^{2}+2 b a +b^{2}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}\, \left (a +b \right )^{\frac {3}{2}}}{a^{2}+2 b a +b^{2}}}, i\right )}{\sqrt {\frac {i \sqrt {b}\, \left (a +b \right )^{\frac {3}{2}}}{a^{2}+2 b a +b^{2}}}\, \sqrt {b^{2} a \,x^{4}+b^{3} x^{4}+b \,a^{2}+2 b^{2} a +b^{3}}}+\frac {b \sqrt {1-\frac {i \sqrt {b}\, \left (a +b \right )^{\frac {3}{2}} x^{2}}{a^{2}+2 b a +b^{2}}}\, \sqrt {1+\frac {i \sqrt {b}\, \left (a +b \right )^{\frac {3}{2}} x^{2}}{a^{2}+2 b a +b^{2}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {b}\, \left (a +b \right )^{\frac {3}{2}}}{a^{2}+2 b a +b^{2}}}, -\frac {i \left (a^{2}+2 b a +b^{2}\right )}{\sqrt {b}\, \left (a +b \right )^{\frac {3}{2}}}, \frac {\sqrt {-\frac {i \sqrt {b}\, \left (a +b \right )^{\frac {3}{2}}}{a^{2}+2 b a +b^{2}}}}{\sqrt {\frac {i \sqrt {b}\, \left (a +b \right )^{\frac {3}{2}}}{a^{2}+2 b a +b^{2}}}}\right )}{\sqrt {\frac {i \sqrt {b}\, \left (a +b \right )^{\frac {3}{2}}}{a^{2}+2 b a +b^{2}}}\, \sqrt {b^{2} a \,x^{4}+b^{3} x^{4}+b \,a^{2}+2 b^{2} a +b^{3}}}+\frac {\sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}, -\frac {i \sqrt {a +b}}{\sqrt {b}}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a +b}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}\, \sqrt {b \,x^{4}+a +b}}\right )}{b \,x^{2} \sqrt {b \,x^{4}+a +b}+\sqrt {\left (b \,x^{4}+a +b \right ) b \left (a +b \right )}}\) \(588\)
default \(\frac {\frac {b^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}, i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}\, \sqrt {b \,x^{4}+a +b}}+\frac {\sqrt {b}\, a \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}, i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}\, \sqrt {b \,x^{4}+a +b}}-\frac {b \sqrt {a +b}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}, i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}\, \sqrt {b \,x^{4}+a +b}}+\frac {a \sqrt {a +b}\, \left (-\frac {\operatorname {arctanh}\left (\frac {2 b \,x^{2}+2 a +2 b}{2 \sqrt {a +2 b}\, \sqrt {b \,x^{4}+a +b}}\right )}{2 \sqrt {a +2 b}}-\frac {\sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}, -\frac {i \sqrt {a +b}}{\sqrt {b}}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a +b}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}\, \sqrt {b \,x^{4}+a +b}}\right )}{2}-\frac {a \sqrt {a +b}\, \left (-\frac {\operatorname {arctanh}\left (\frac {2 b \,x^{2}+2 a +2 b}{2 \sqrt {a +2 b}\, \sqrt {b \,x^{4}+a +b}}\right )}{2 \sqrt {a +2 b}}+\frac {\sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}, -\frac {i \sqrt {a +b}}{\sqrt {b}}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a +b}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}\, \sqrt {b \,x^{4}+a +b}}\right )}{2}}{\left (a +b \right ) \left (\sqrt {b}-\sqrt {a +b}\right )}\) \(600\)

Input:

int((1+b^(1/2)*(a+b-b^(1/2)*(a+b)^(1/2))*x^2/(a+b)/(-b^(1/2)+(a+b)^(1/2))) 
/(-x^2+1)/(b*x^4+a+b)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

(1+b^(1/2)*(b^(1/2)*(a+b)^(1/2)-a-b)*x^2/(a+b)/(b^(1/2)-(a+b)^(1/2)))/(b*x 
^2*(b*x^4+a+b)^(1/2)+((b*x^4+a+b)*b*(a+b))^(1/2))*((b*x^4+a+b)*b*(a+b))^(1 
/2)*(-b/(I*b^(1/2)*(a+b)^(3/2)/(a^2+2*a*b+b^2))^(1/2)*(1-I*b^(1/2)*(a+b)^( 
3/2)/(a^2+2*a*b+b^2)*x^2)^(1/2)*(1+I*b^(1/2)*(a+b)^(3/2)/(a^2+2*a*b+b^2)*x 
^2)^(1/2)/(a*b^2*x^4+b^3*x^4+a^2*b+2*a*b^2+b^3)^(1/2)*EllipticF(x*(I*b^(1/ 
2)*(a+b)^(3/2)/(a^2+2*a*b+b^2))^(1/2),I)+b/(I*b^(1/2)*(a+b)^(3/2)/(a^2+2*a 
*b+b^2))^(1/2)*(1-I*b^(1/2)*(a+b)^(3/2)/(a^2+2*a*b+b^2)*x^2)^(1/2)*(1+I*b^ 
(1/2)*(a+b)^(3/2)/(a^2+2*a*b+b^2)*x^2)^(1/2)/(a*b^2*x^4+b^3*x^4+a^2*b+2*a* 
b^2+b^3)^(1/2)*EllipticPi(x*(I*b^(1/2)*(a+b)^(3/2)/(a^2+2*a*b+b^2))^(1/2), 
-I/b^(1/2)/(a+b)^(3/2)*(a^2+2*a*b+b^2),(-I*b^(1/2)*(a+b)^(3/2)/(a^2+2*a*b+ 
b^2))^(1/2)/(I*b^(1/2)*(a+b)^(3/2)/(a^2+2*a*b+b^2))^(1/2))+1/(I*b^(1/2)/(a 
+b)^(1/2))^(1/2)*(1-I*b^(1/2)*x^2/(a+b)^(1/2))^(1/2)*(1+I*b^(1/2)*x^2/(a+b 
)^(1/2))^(1/2)/(b*x^4+a+b)^(1/2)*EllipticPi(x*(I*b^(1/2)/(a+b)^(1/2))^(1/2 
),-I/b^(1/2)*(a+b)^(1/2),(-I*b^(1/2)/(a+b)^(1/2))^(1/2)/(I*b^(1/2)/(a+b)^( 
1/2))^(1/2)))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1+\frac {\sqrt {b} \left (a+b-\sqrt {b} \sqrt {a+b}\right ) x^2}{(a+b) \left (-\sqrt {b}+\sqrt {a+b}\right )}}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=\text {Timed out} \] Input:

integrate((1+b^(1/2)*(a+b-b^(1/2)*(a+b)^(1/2))*x^2/(a+b)/(-b^(1/2)+(a+b)^( 
1/2)))/(-x^2+1)/(b*x^4+a+b)^(1/2),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {1+\frac {\sqrt {b} \left (a+b-\sqrt {b} \sqrt {a+b}\right ) x^2}{(a+b) \left (-\sqrt {b}+\sqrt {a+b}\right )}}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=- \frac {\int \left (- \frac {b^{\frac {3}{2}}}{x^{2} \sqrt {a + b x^{4} + b} - \sqrt {a + b x^{4} + b}}\right )\, dx + \int \left (- \frac {a \sqrt {b}}{x^{2} \sqrt {a + b x^{4} + b} - \sqrt {a + b x^{4} + b}}\right )\, dx + \int \frac {a \sqrt {a + b}}{x^{2} \sqrt {a + b x^{4} + b} - \sqrt {a + b x^{4} + b}}\, dx + \int \frac {b \sqrt {a + b}}{x^{2} \sqrt {a + b x^{4} + b} - \sqrt {a + b x^{4} + b}}\, dx + \int \frac {b^{\frac {3}{2}} x^{2}}{x^{2} \sqrt {a + b x^{4} + b} - \sqrt {a + b x^{4} + b}}\, dx + \int \frac {a \sqrt {b} x^{2}}{x^{2} \sqrt {a + b x^{4} + b} - \sqrt {a + b x^{4} + b}}\, dx + \int \left (- \frac {b x^{2} \sqrt {a + b}}{x^{2} \sqrt {a + b x^{4} + b} - \sqrt {a + b x^{4} + b}}\right )\, dx}{\left (a + b\right ) \left (- \sqrt {b} + \sqrt {a + b}\right )} \] Input:

integrate((1+b**(1/2)*(a+b-b**(1/2)*(a+b)**(1/2))*x**2/(a+b)/(-b**(1/2)+(a 
+b)**(1/2)))/(-x**2+1)/(b*x**4+a+b)**(1/2),x)
 

Output:

-(Integral(-b**(3/2)/(x**2*sqrt(a + b*x**4 + b) - sqrt(a + b*x**4 + b)), x 
) + Integral(-a*sqrt(b)/(x**2*sqrt(a + b*x**4 + b) - sqrt(a + b*x**4 + b)) 
, x) + Integral(a*sqrt(a + b)/(x**2*sqrt(a + b*x**4 + b) - sqrt(a + b*x**4 
 + b)), x) + Integral(b*sqrt(a + b)/(x**2*sqrt(a + b*x**4 + b) - sqrt(a + 
b*x**4 + b)), x) + Integral(b**(3/2)*x**2/(x**2*sqrt(a + b*x**4 + b) - sqr 
t(a + b*x**4 + b)), x) + Integral(a*sqrt(b)*x**2/(x**2*sqrt(a + b*x**4 + b 
) - sqrt(a + b*x**4 + b)), x) + Integral(-b*x**2*sqrt(a + b)/(x**2*sqrt(a 
+ b*x**4 + b) - sqrt(a + b*x**4 + b)), x))/((a + b)*(-sqrt(b) + sqrt(a + b 
)))
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1+\frac {\sqrt {b} \left (a+b-\sqrt {b} \sqrt {a+b}\right ) x^2}{(a+b) \left (-\sqrt {b}+\sqrt {a+b}\right )}}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate((1+b^(1/2)*(a+b-b^(1/2)*(a+b)^(1/2))*x^2/(a+b)/(-b^(1/2)+(a+b)^( 
1/2)))/(-x^2+1)/(b*x^4+a+b)^(1/2),x, algorithm="maxima")
 

Output:

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 

Giac [F(-2)]

Exception generated. \[ \int \frac {1+\frac {\sqrt {b} \left (a+b-\sqrt {b} \sqrt {a+b}\right ) x^2}{(a+b) \left (-\sqrt {b}+\sqrt {a+b}\right )}}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((1+b^(1/2)*(a+b-b^(1/2)*(a+b)^(1/2))*x^2/(a+b)/(-b^(1/2)+(a+b)^( 
1/2)))/(-x^2+1)/(b*x^4+a+b)^(1/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Recursive assumption sageVARa>=(-sa 
geVARb) ignoredRecursive assumption sageVARa>=(-sageVARb) ignoredRecursive 
 assumpti
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1+\frac {\sqrt {b} \left (a+b-\sqrt {b} \sqrt {a+b}\right ) x^2}{(a+b) \left (-\sqrt {b}+\sqrt {a+b}\right )}}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=\int -\frac {\frac {\sqrt {b}\,x^2\,\left (a+b-\sqrt {b}\,\sqrt {a+b}\right )}{\left (\sqrt {a+b}-\sqrt {b}\right )\,\left (a+b\right )}+1}{\left (x^2-1\right )\,\sqrt {b\,x^4+a+b}} \,d x \] Input:

int(-((b^(1/2)*x^2*(a + b - b^(1/2)*(a + b)^(1/2)))/(((a + b)^(1/2) - b^(1 
/2))*(a + b)) + 1)/((x^2 - 1)*(a + b + b*x^4)^(1/2)),x)
 

Output:

int(-((b^(1/2)*x^2*(a + b - b^(1/2)*(a + b)^(1/2)))/(((a + b)^(1/2) - b^(1 
/2))*(a + b)) + 1)/((x^2 - 1)*(a + b + b*x^4)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1+\frac {\sqrt {b} \left (a+b-\sqrt {b} \sqrt {a+b}\right ) x^2}{(a+b) \left (-\sqrt {b}+\sqrt {a+b}\right )}}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=-\sqrt {b}\, \sqrt {a +b}\, \left (\int \frac {\sqrt {b \,x^{4}+a +b}\, x^{2}}{a b \,x^{6}+b^{2} x^{6}-a b \,x^{4}-b^{2} x^{4}+a^{2} x^{2}+2 a b \,x^{2}+b^{2} x^{2}-a^{2}-2 a b -b^{2}}d x \right )-\left (\int \frac {\sqrt {b \,x^{4}+a +b}}{a b \,x^{6}+b^{2} x^{6}-a b \,x^{4}-b^{2} x^{4}+a^{2} x^{2}+2 a b \,x^{2}+b^{2} x^{2}-a^{2}-2 a b -b^{2}}d x \right ) a -\left (\int \frac {\sqrt {b \,x^{4}+a +b}}{a b \,x^{6}+b^{2} x^{6}-a b \,x^{4}-b^{2} x^{4}+a^{2} x^{2}+2 a b \,x^{2}+b^{2} x^{2}-a^{2}-2 a b -b^{2}}d x \right ) b \] Input:

int((1+b^(1/2)*(a+b-b^(1/2)*(a+b)^(1/2))*x^2/(a+b)/(-b^(1/2)+(a+b)^(1/2))) 
/(-x^2+1)/(b*x^4+a+b)^(1/2),x)
 

Output:

 - (sqrt(b)*sqrt(a + b)*int((sqrt(a + b*x**4 + b)*x**2)/(a**2*x**2 - a**2 
+ a*b*x**6 - a*b*x**4 + 2*a*b*x**2 - 2*a*b + b**2*x**6 - b**2*x**4 + b**2* 
x**2 - b**2),x) + int(sqrt(a + b*x**4 + b)/(a**2*x**2 - a**2 + a*b*x**6 - 
a*b*x**4 + 2*a*b*x**2 - 2*a*b + b**2*x**6 - b**2*x**4 + b**2*x**2 - b**2), 
x)*a + int(sqrt(a + b*x**4 + b)/(a**2*x**2 - a**2 + a*b*x**6 - a*b*x**4 + 
2*a*b*x**2 - 2*a*b + b**2*x**6 - b**2*x**4 + b**2*x**2 - b**2),x)*b)