\(\int \frac {a \sqrt {a+b}+b \sqrt {a+b}+\sqrt {b} (a+b)-\sqrt {b} (a+b+\sqrt {b} \sqrt {a+b}) x^2}{(1-x^2) \sqrt {a+b+b x^4}} \, dx\) [90]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [C] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 76, antiderivative size = 301 \[ \int \frac {a \sqrt {a+b}+b \sqrt {a+b}+\sqrt {b} (a+b)-\sqrt {b} \left (a+b+\sqrt {b} \sqrt {a+b}\right ) x^2}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=\frac {a \sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+2 b} x}{\sqrt {a+b+b x^4}}\right )}{2 \sqrt {a+2 b}}+\frac {\sqrt [4]{b} (a+b)^{5/4} \left (1+\frac {\sqrt {b} x^2}{\sqrt {a+b}}\right ) \sqrt {\frac {a+b+b x^4}{(a+b) \left (1+\frac {\sqrt {b} x^2}{\sqrt {a+b}}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b}}\right ),\frac {1}{2}\right )}{\sqrt {a+b+b x^4}}+\frac {(a+b)^{3/4} \left (\sqrt {b}-\sqrt {a+b}\right )^2 \left (1+\frac {\sqrt {b} x^2}{\sqrt {a+b}}\right ) \sqrt {\frac {a+b+b x^4}{(a+b) \left (1+\frac {\sqrt {b} x^2}{\sqrt {a+b}}\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b}+\sqrt {a+b}\right )^2}{4 \sqrt {b} \sqrt {a+b}},2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{b} \sqrt {a+b+b x^4}} \] Output:

1/2*a*(a+b)^(1/2)*arctanh((a+2*b)^(1/2)*x/(b*x^4+a+b)^(1/2))/(a+2*b)^(1/2) 
+b^(1/4)*(a+b)^(5/4)*(1+b^(1/2)*x^2/(a+b)^(1/2))*((b*x^4+a+b)/(a+b)/(1+b^( 
1/2)*x^2/(a+b)^(1/2))^2)^(1/2)*InverseJacobiAM(2*arctan(b^(1/4)*x/(a+b)^(1 
/4)),1/2*2^(1/2))/(b*x^4+a+b)^(1/2)+1/4*(a+b)^(3/4)*(b^(1/2)-(a+b)^(1/2))^ 
2*(1+b^(1/2)*x^2/(a+b)^(1/2))*((b*x^4+a+b)/(a+b)/(1+b^(1/2)*x^2/(a+b)^(1/2 
))^2)^(1/2)*EllipticPi(sin(2*arctan(b^(1/4)*x/(a+b)^(1/4))),1/4*(b^(1/2)+( 
a+b)^(1/2))^2/b^(1/2)/(a+b)^(1/2),1/2*2^(1/2))/b^(1/4)/(b*x^4+a+b)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.92 (sec) , antiderivative size = 190, normalized size of antiderivative = 0.63 \[ \int \frac {a \sqrt {a+b}+b \sqrt {a+b}+\sqrt {b} (a+b)-\sqrt {b} \left (a+b+\sqrt {b} \sqrt {a+b}\right ) x^2}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=-\frac {i \sqrt {\frac {a+b+b x^4}{a+b}} \left (b^{3/4} \left (a+b+\sqrt {b} \sqrt {a+b}\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {\sqrt {b}}{\sqrt {-a-b}}} x\right ),-1\right )-(-1)^{3/4} a \sqrt {-\frac {\sqrt {b}}{\sqrt {-a-b}}} (a+b)^{3/4} \operatorname {EllipticPi}\left (\frac {i \sqrt {a+b}}{\sqrt {b}},\arcsin \left (\frac {(-1)^{3/4} \sqrt [4]{b} x}{\sqrt [4]{a+b}}\right ),-1\right )\right )}{\sqrt {-\frac {\sqrt {b}}{\sqrt {-a-b}}} \sqrt [4]{b} \sqrt {a+b+b x^4}} \] Input:

Integrate[(a*Sqrt[a + b] + b*Sqrt[a + b] + Sqrt[b]*(a + b) - Sqrt[b]*(a + 
b + Sqrt[b]*Sqrt[a + b])*x^2)/((1 - x^2)*Sqrt[a + b + b*x^4]),x]
 

Output:

((-I)*Sqrt[(a + b + b*x^4)/(a + b)]*(b^(3/4)*(a + b + Sqrt[b]*Sqrt[a + b]) 
*EllipticF[I*ArcSinh[Sqrt[-(Sqrt[b]/Sqrt[-a - b])]*x], -1] - (-1)^(3/4)*a* 
Sqrt[-(Sqrt[b]/Sqrt[-a - b])]*(a + b)^(3/4)*EllipticPi[(I*Sqrt[a + b])/Sqr 
t[b], ArcSin[((-1)^(3/4)*b^(1/4)*x)/(a + b)^(1/4)], -1]))/(Sqrt[-(Sqrt[b]/ 
Sqrt[-a - b])]*b^(1/4)*Sqrt[a + b + b*x^4])
 

Rubi [A] (warning: unable to verify)

Time = 1.13 (sec) , antiderivative size = 587, normalized size of antiderivative = 1.95, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.039, Rules used = {2225, 761, 2223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {-\sqrt {b} x^2 \left (\sqrt {b} \sqrt {a+b}+a+b\right )+\sqrt {b} (a+b)+a \sqrt {a+b}+b \sqrt {a+b}}{\left (1-x^2\right ) \sqrt {a+b x^4+b}} \, dx\)

\(\Big \downarrow \) 2225

\(\displaystyle \frac {2 \sqrt {b} \sqrt {a+b} \left (\sqrt {b} \sqrt {a+b}+a+b\right )^2 \int \frac {1}{\sqrt {b x^4+a+b}}dx}{2 b \left (\sqrt {a+b}+\sqrt {b}\right )+a \left (\sqrt {a+b}+2 \sqrt {b}\right )}+\frac {a \sqrt {a+b} \int \frac {\sqrt {b} \left (a+b+\sqrt {b} \sqrt {a+b}\right ) x^2+(a+b) \left (\sqrt {b}+\sqrt {a+b}\right )}{\left (1-x^2\right ) \sqrt {b x^4+a+b}}dx}{2 b \left (\sqrt {a+b}+\sqrt {b}\right )+a \left (\sqrt {a+b}+2 \sqrt {b}\right )}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {a \sqrt {a+b} \int \frac {\sqrt {b} \left (a+b+\sqrt {b} \sqrt {a+b}\right ) x^2+(a+b) \left (\sqrt {b}+\sqrt {a+b}\right )}{\left (1-x^2\right ) \sqrt {b x^4+a+b}}dx}{2 b \left (\sqrt {a+b}+\sqrt {b}\right )+a \left (\sqrt {a+b}+2 \sqrt {b}\right )}+\frac {\sqrt [4]{b} (a+b)^{3/4} \left (\sqrt {b} \sqrt {a+b}+a+b\right )^2 \left (\frac {\sqrt {b} x^2}{\sqrt {a+b}}+1\right ) \sqrt {\frac {a+b x^4+b}{(a+b) \left (\frac {\sqrt {b} x^2}{\sqrt {a+b}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b}}\right ),\frac {1}{2}\right )}{\left (2 b \left (\sqrt {a+b}+\sqrt {b}\right )+a \left (\sqrt {a+b}+2 \sqrt {b}\right )\right ) \sqrt {a+b x^4+b}}\)

\(\Big \downarrow \) 2223

\(\displaystyle \frac {a \sqrt {a+b} \left (\frac {a (a+b) \sqrt {\sqrt {a+b}+\sqrt {b}} \left (\frac {\sqrt {b} x^2 \left (\sqrt {b} \sqrt {a+b}+a+b\right )}{(a+b) \left (\sqrt {a+b}+\sqrt {b}\right )}+1\right ) \sqrt {\frac {a+b x^4+b}{(a+b) \left (\frac {\sqrt {b} x^2 \left (\sqrt {b} \sqrt {a+b}+a+b\right )}{(a+b) \left (\sqrt {a+b}+\sqrt {b}\right )}+1\right )^2}} \operatorname {EllipticPi}\left (\frac {a^2+8 b a+8 b^2+\sqrt {b} \sqrt {a+b} (4 a+8 b)}{4 \sqrt {b} \left (2 b^{3/2}+2 \sqrt {a+b} b+2 a \sqrt {b}+a \sqrt {a+b}\right )},2 \arctan \left (\frac {\sqrt [4]{b} \sqrt {a+b+\sqrt {b} \sqrt {a+b}} x}{\sqrt {a+b} \sqrt {\sqrt {b}+\sqrt {a+b}}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{b} \sqrt {\sqrt {b} \sqrt {a+b}+a+b} \sqrt {a+b x^4+b}}+\frac {\left (2 b \left (\sqrt {a+b}+\sqrt {b}\right )+a \left (\sqrt {a+b}+2 \sqrt {b}\right )\right ) \text {arctanh}\left (\frac {x \sqrt {a+2 b}}{\sqrt {a+b x^4+b}}\right )}{2 \sqrt {a+2 b}}\right )}{2 b \left (\sqrt {a+b}+\sqrt {b}\right )+a \left (\sqrt {a+b}+2 \sqrt {b}\right )}+\frac {\sqrt [4]{b} (a+b)^{3/4} \left (\sqrt {b} \sqrt {a+b}+a+b\right )^2 \left (\frac {\sqrt {b} x^2}{\sqrt {a+b}}+1\right ) \sqrt {\frac {a+b x^4+b}{(a+b) \left (\frac {\sqrt {b} x^2}{\sqrt {a+b}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a+b}}\right ),\frac {1}{2}\right )}{\left (2 b \left (\sqrt {a+b}+\sqrt {b}\right )+a \left (\sqrt {a+b}+2 \sqrt {b}\right )\right ) \sqrt {a+b x^4+b}}\)

Input:

Int[(a*Sqrt[a + b] + b*Sqrt[a + b] + Sqrt[b]*(a + b) - Sqrt[b]*(a + b + Sq 
rt[b]*Sqrt[a + b])*x^2)/((1 - x^2)*Sqrt[a + b + b*x^4]),x]
 

Output:

(b^(1/4)*(a + b)^(3/4)*(a + b + Sqrt[b]*Sqrt[a + b])^2*(1 + (Sqrt[b]*x^2)/ 
Sqrt[a + b])*Sqrt[(a + b + b*x^4)/((a + b)*(1 + (Sqrt[b]*x^2)/Sqrt[a + b]) 
^2)]*EllipticF[2*ArcTan[(b^(1/4)*x)/(a + b)^(1/4)], 1/2])/((2*b*(Sqrt[b] + 
 Sqrt[a + b]) + a*(2*Sqrt[b] + Sqrt[a + b]))*Sqrt[a + b + b*x^4]) + (a*Sqr 
t[a + b]*(((2*b*(Sqrt[b] + Sqrt[a + b]) + a*(2*Sqrt[b] + Sqrt[a + b]))*Arc 
Tanh[(Sqrt[a + 2*b]*x)/Sqrt[a + b + b*x^4]])/(2*Sqrt[a + 2*b]) + (a*(a + b 
)*Sqrt[Sqrt[b] + Sqrt[a + b]]*(1 + (Sqrt[b]*(a + b + Sqrt[b]*Sqrt[a + b])* 
x^2)/((a + b)*(Sqrt[b] + Sqrt[a + b])))*Sqrt[(a + b + b*x^4)/((a + b)*(1 + 
 (Sqrt[b]*(a + b + Sqrt[b]*Sqrt[a + b])*x^2)/((a + b)*(Sqrt[b] + Sqrt[a + 
b])))^2)]*EllipticPi[(a^2 + 8*a*b + 8*b^2 + Sqrt[b]*Sqrt[a + b]*(4*a + 8*b 
))/(4*Sqrt[b]*(2*a*Sqrt[b] + 2*b^(3/2) + a*Sqrt[a + b] + 2*b*Sqrt[a + b])) 
, 2*ArcTan[(b^(1/4)*Sqrt[a + b + Sqrt[b]*Sqrt[a + b]]*x)/(Sqrt[a + b]*Sqrt 
[Sqrt[b] + Sqrt[a + b]])], 1/2])/(4*b^(1/4)*Sqrt[a + b + Sqrt[b]*Sqrt[a + 
b]]*Sqrt[a + b + b*x^4])))/(2*b*(Sqrt[b] + Sqrt[a + b]) + a*(2*Sqrt[b] + S 
qrt[a + b]))
 

Defintions of rubi rules used

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 2223
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTanh[Rt[(-c)* 
(d/e) - a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[(-c)*(d/e) - a*(e/d), 2] 
)), x] + Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^ 
2)]/(4*d*e*q*Sqrt[a + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*Arc 
Tan[q*x], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0 
] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && NegQ[c*(d/e) + a*(e 
/d)]
 

rule 2225
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> Simp[2*A*(B/(B*d + A*e))   Int[1/Sqrt[a + c*x^4], x], x] - S 
imp[(B*d - A*e)/(B*d + A*e)   Int[(A - B*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]) 
, x], x] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c 
/a] && EqQ[c*A^2 - a*B^2, 0] && NegQ[B/A]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 3.46 (sec) , antiderivative size = 580, normalized size of antiderivative = 1.93

method result size
default \(\frac {b^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}, i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}\, \sqrt {b \,x^{4}+a +b}}+\frac {b \sqrt {a +b}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}, i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}\, \sqrt {b \,x^{4}+a +b}}+\frac {\sqrt {b}\, a \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}, i\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}\, \sqrt {b \,x^{4}+a +b}}-\frac {a \sqrt {a +b}\, \left (-\frac {\operatorname {arctanh}\left (\frac {2 b \,x^{2}+2 a +2 b}{2 \sqrt {a +2 b}\, \sqrt {b \,x^{4}+a +b}}\right )}{2 \sqrt {a +2 b}}-\frac {\sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}, -\frac {i \sqrt {a +b}}{\sqrt {b}}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a +b}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}\, \sqrt {b \,x^{4}+a +b}}\right )}{2}+\frac {a \sqrt {a +b}\, \left (-\frac {\operatorname {arctanh}\left (\frac {2 b \,x^{2}+2 a +2 b}{2 \sqrt {a +2 b}\, \sqrt {b \,x^{4}+a +b}}\right )}{2 \sqrt {a +2 b}}+\frac {\sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a +b}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}, -\frac {i \sqrt {a +b}}{\sqrt {b}}, \frac {\sqrt {-\frac {i \sqrt {b}}{\sqrt {a +b}}}}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}}\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a +b}}}\, \sqrt {b \,x^{4}+a +b}}\right )}{2}\) \(580\)
elliptic \(\text {Expression too large to display}\) \(999\)

Input:

int((a*(a+b)^(1/2)+b*(a+b)^(1/2)+b^(1/2)*(a+b)-b^(1/2)*(a+b+b^(1/2)*(a+b)^ 
(1/2))*x^2)/(-x^2+1)/(b*x^4+a+b)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

b^(3/2)/(I*b^(1/2)/(a+b)^(1/2))^(1/2)*(1-I*b^(1/2)*x^2/(a+b)^(1/2))^(1/2)* 
(1+I*b^(1/2)*x^2/(a+b)^(1/2))^(1/2)/(b*x^4+a+b)^(1/2)*EllipticF(x*(I*b^(1/ 
2)/(a+b)^(1/2))^(1/2),I)+b*(a+b)^(1/2)/(I*b^(1/2)/(a+b)^(1/2))^(1/2)*(1-I* 
b^(1/2)*x^2/(a+b)^(1/2))^(1/2)*(1+I*b^(1/2)*x^2/(a+b)^(1/2))^(1/2)/(b*x^4+ 
a+b)^(1/2)*EllipticF(x*(I*b^(1/2)/(a+b)^(1/2))^(1/2),I)+b^(1/2)*a/(I*b^(1/ 
2)/(a+b)^(1/2))^(1/2)*(1-I*b^(1/2)*x^2/(a+b)^(1/2))^(1/2)*(1+I*b^(1/2)*x^2 
/(a+b)^(1/2))^(1/2)/(b*x^4+a+b)^(1/2)*EllipticF(x*(I*b^(1/2)/(a+b)^(1/2))^ 
(1/2),I)-1/2*a*(a+b)^(1/2)*(-1/2/(a+2*b)^(1/2)*arctanh(1/2*(2*b*x^2+2*a+2* 
b)/(a+2*b)^(1/2)/(b*x^4+a+b)^(1/2))-1/(I*b^(1/2)/(a+b)^(1/2))^(1/2)*(1-I*b 
^(1/2)*x^2/(a+b)^(1/2))^(1/2)*(1+I*b^(1/2)*x^2/(a+b)^(1/2))^(1/2)/(b*x^4+a 
+b)^(1/2)*EllipticPi(x*(I*b^(1/2)/(a+b)^(1/2))^(1/2),-I/b^(1/2)*(a+b)^(1/2 
),(-I*b^(1/2)/(a+b)^(1/2))^(1/2)/(I*b^(1/2)/(a+b)^(1/2))^(1/2)))+1/2*a*(a+ 
b)^(1/2)*(-1/2/(a+2*b)^(1/2)*arctanh(1/2*(2*b*x^2+2*a+2*b)/(a+2*b)^(1/2)/( 
b*x^4+a+b)^(1/2))+1/(I*b^(1/2)/(a+b)^(1/2))^(1/2)*(1-I*b^(1/2)*x^2/(a+b)^( 
1/2))^(1/2)*(1+I*b^(1/2)*x^2/(a+b)^(1/2))^(1/2)/(b*x^4+a+b)^(1/2)*Elliptic 
Pi(x*(I*b^(1/2)/(a+b)^(1/2))^(1/2),-I/b^(1/2)*(a+b)^(1/2),(-I*b^(1/2)/(a+b 
)^(1/2))^(1/2)/(I*b^(1/2)/(a+b)^(1/2))^(1/2)))
 

Fricas [F]

\[ \int \frac {a \sqrt {a+b}+b \sqrt {a+b}+\sqrt {b} (a+b)-\sqrt {b} \left (a+b+\sqrt {b} \sqrt {a+b}\right ) x^2}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=\int { \frac {{\left (a + \sqrt {a + b} \sqrt {b} + b\right )} \sqrt {b} x^{2} - \sqrt {a + b} a - {\left (a + b\right )} \sqrt {b} - \sqrt {a + b} b}{\sqrt {b x^{4} + a + b} {\left (x^{2} - 1\right )}} \,d x } \] Input:

integrate((a*(a+b)^(1/2)+b*(a+b)^(1/2)+b^(1/2)*(a+b)-b^(1/2)*(a+b+b^(1/2)* 
(a+b)^(1/2))*x^2)/(-x^2+1)/(b*x^4+a+b)^(1/2),x, algorithm="fricas")
 

Output:

integral(sqrt(b*x^4 + a + b)*((b*x^2 - a - b)*sqrt(a + b) + ((a + b)*x^2 - 
 a - b)*sqrt(b))/(b*x^6 - b*x^4 + (a + b)*x^2 - a - b), x)
 

Sympy [F]

\[ \int \frac {a \sqrt {a+b}+b \sqrt {a+b}+\sqrt {b} (a+b)-\sqrt {b} \left (a+b+\sqrt {b} \sqrt {a+b}\right ) x^2}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=\int \frac {a \sqrt {b} x^{2} - a \sqrt {b} - a \sqrt {a + b} + b^{\frac {3}{2}} x^{2} - b^{\frac {3}{2}} + b x^{2} \sqrt {a + b} - b \sqrt {a + b}}{\left (x - 1\right ) \left (x + 1\right ) \sqrt {a + b x^{4} + b}}\, dx \] Input:

integrate((a*(a+b)**(1/2)+b*(a+b)**(1/2)+b**(1/2)*(a+b)-b**(1/2)*(a+b+b**( 
1/2)*(a+b)**(1/2))*x**2)/(-x**2+1)/(b*x**4+a+b)**(1/2),x)
 

Output:

Integral((a*sqrt(b)*x**2 - a*sqrt(b) - a*sqrt(a + b) + b**(3/2)*x**2 - b** 
(3/2) + b*x**2*sqrt(a + b) - b*sqrt(a + b))/((x - 1)*(x + 1)*sqrt(a + b*x* 
*4 + b)), x)
 

Maxima [F]

\[ \int \frac {a \sqrt {a+b}+b \sqrt {a+b}+\sqrt {b} (a+b)-\sqrt {b} \left (a+b+\sqrt {b} \sqrt {a+b}\right ) x^2}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=\int { \frac {{\left (a + \sqrt {a + b} \sqrt {b} + b\right )} \sqrt {b} x^{2} - \sqrt {a + b} a - {\left (a + b\right )} \sqrt {b} - \sqrt {a + b} b}{\sqrt {b x^{4} + a + b} {\left (x^{2} - 1\right )}} \,d x } \] Input:

integrate((a*(a+b)^(1/2)+b*(a+b)^(1/2)+b^(1/2)*(a+b)-b^(1/2)*(a+b+b^(1/2)* 
(a+b)^(1/2))*x^2)/(-x^2+1)/(b*x^4+a+b)^(1/2),x, algorithm="maxima")
 

Output:

integrate(((a + sqrt(a + b)*sqrt(b) + b)*sqrt(b)*x^2 - sqrt(a + b)*a - (a 
+ b)*sqrt(b) - sqrt(a + b)*b)/(sqrt(b*x^4 + a + b)*(x^2 - 1)), x)
 

Giac [F]

\[ \int \frac {a \sqrt {a+b}+b \sqrt {a+b}+\sqrt {b} (a+b)-\sqrt {b} \left (a+b+\sqrt {b} \sqrt {a+b}\right ) x^2}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=\int { \frac {{\left (a + \sqrt {a + b} \sqrt {b} + b\right )} \sqrt {b} x^{2} - \sqrt {a + b} a - {\left (a + b\right )} \sqrt {b} - \sqrt {a + b} b}{\sqrt {b x^{4} + a + b} {\left (x^{2} - 1\right )}} \,d x } \] Input:

integrate((a*(a+b)^(1/2)+b*(a+b)^(1/2)+b^(1/2)*(a+b)-b^(1/2)*(a+b+b^(1/2)* 
(a+b)^(1/2))*x^2)/(-x^2+1)/(b*x^4+a+b)^(1/2),x, algorithm="giac")
 

Output:

integrate(((a + sqrt(a + b)*sqrt(b) + b)*sqrt(b)*x^2 - sqrt(a + b)*a - (a 
+ b)*sqrt(b) - sqrt(a + b)*b)/(sqrt(b*x^4 + a + b)*(x^2 - 1)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a \sqrt {a+b}+b \sqrt {a+b}+\sqrt {b} (a+b)-\sqrt {b} \left (a+b+\sqrt {b} \sqrt {a+b}\right ) x^2}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=\int -\frac {a\,\sqrt {a+b}+b\,\sqrt {a+b}+\sqrt {b}\,\left (a+b\right )-\sqrt {b}\,x^2\,\left (a+b+\sqrt {b}\,\sqrt {a+b}\right )}{\left (x^2-1\right )\,\sqrt {b\,x^4+a+b}} \,d x \] Input:

int(-(a*(a + b)^(1/2) + b*(a + b)^(1/2) + b^(1/2)*(a + b) - b^(1/2)*x^2*(a 
 + b + b^(1/2)*(a + b)^(1/2)))/((x^2 - 1)*(a + b + b*x^4)^(1/2)),x)
 

Output:

int(-(a*(a + b)^(1/2) + b*(a + b)^(1/2) + b^(1/2)*(a + b) - b^(1/2)*x^2*(a 
 + b + b^(1/2)*(a + b)^(1/2)))/((x^2 - 1)*(a + b + b*x^4)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {a \sqrt {a+b}+b \sqrt {a+b}+\sqrt {b} (a+b)-\sqrt {b} \left (a+b+\sqrt {b} \sqrt {a+b}\right ) x^2}{\left (1-x^2\right ) \sqrt {a+b+b x^4}} \, dx=-\sqrt {a +b}\, \left (\int \frac {\sqrt {b \,x^{4}+a +b}}{b \,x^{6}-b \,x^{4}+a \,x^{2}+b \,x^{2}-a -b}d x \right ) a -\sqrt {a +b}\, \left (\int \frac {\sqrt {b \,x^{4}+a +b}}{b \,x^{6}-b \,x^{4}+a \,x^{2}+b \,x^{2}-a -b}d x \right ) b +\sqrt {a +b}\, \left (\int \frac {\sqrt {b \,x^{4}+a +b}\, x^{2}}{b \,x^{6}-b \,x^{4}+a \,x^{2}+b \,x^{2}-a -b}d x \right ) b -\sqrt {b}\, \left (\int \frac {\sqrt {b \,x^{4}+a +b}}{b \,x^{6}-b \,x^{4}+a \,x^{2}+b \,x^{2}-a -b}d x \right ) a -\sqrt {b}\, \left (\int \frac {\sqrt {b \,x^{4}+a +b}}{b \,x^{6}-b \,x^{4}+a \,x^{2}+b \,x^{2}-a -b}d x \right ) b +\sqrt {b}\, \left (\int \frac {\sqrt {b \,x^{4}+a +b}\, x^{2}}{b \,x^{6}-b \,x^{4}+a \,x^{2}+b \,x^{2}-a -b}d x \right ) a +\sqrt {b}\, \left (\int \frac {\sqrt {b \,x^{4}+a +b}\, x^{2}}{b \,x^{6}-b \,x^{4}+a \,x^{2}+b \,x^{2}-a -b}d x \right ) b \] Input:

int((a*(a+b)^(1/2)+b*(a+b)^(1/2)+b^(1/2)*(a+b)-b^(1/2)*(a+b+b^(1/2)*(a+b)^ 
(1/2))*x^2)/(-x^2+1)/(b*x^4+a+b)^(1/2),x)
 

Output:

 - sqrt(a + b)*int(sqrt(a + b*x**4 + b)/(a*x**2 - a + b*x**6 - b*x**4 + b* 
x**2 - b),x)*a - sqrt(a + b)*int(sqrt(a + b*x**4 + b)/(a*x**2 - a + b*x**6 
 - b*x**4 + b*x**2 - b),x)*b + sqrt(a + b)*int((sqrt(a + b*x**4 + b)*x**2) 
/(a*x**2 - a + b*x**6 - b*x**4 + b*x**2 - b),x)*b - sqrt(b)*int(sqrt(a + b 
*x**4 + b)/(a*x**2 - a + b*x**6 - b*x**4 + b*x**2 - b),x)*a - sqrt(b)*int( 
sqrt(a + b*x**4 + b)/(a*x**2 - a + b*x**6 - b*x**4 + b*x**2 - b),x)*b + sq 
rt(b)*int((sqrt(a + b*x**4 + b)*x**2)/(a*x**2 - a + b*x**6 - b*x**4 + b*x* 
*2 - b),x)*a + sqrt(b)*int((sqrt(a + b*x**4 + b)*x**2)/(a*x**2 - a + b*x** 
6 - b*x**4 + b*x**2 - b),x)*b