\(\int (1+2 x^2) (4-7 x^2+x^4) \sqrt {2+5 x^2+3 x^4} \, dx\) [192]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 34, antiderivative size = 211 \[ \int \left (1+2 x^2\right ) \left (4-7 x^2+x^4\right ) \sqrt {2+5 x^2+3 x^4} \, dx=\frac {7484 x \left (2+3 x^2\right )}{5103 \sqrt {2+5 x^2+3 x^4}}+\frac {x \left (5935+5121 x^2\right ) \sqrt {2+5 x^2+3 x^4}}{1701}-\frac {137}{189} x \left (2+5 x^2+3 x^4\right )^{3/2}+\frac {2}{27} x^3 \left (2+5 x^2+3 x^4\right )^{3/2}-\frac {7484 \sqrt {2} \left (1+x^2\right ) \sqrt {\frac {2+3 x^2}{1+x^2}} E\left (\arctan (x)\left |-\frac {1}{2}\right .\right )}{5103 \sqrt {2+5 x^2+3 x^4}}+\frac {3335 \sqrt {2} \left (1+x^2\right ) \sqrt {\frac {2+3 x^2}{1+x^2}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{1701 \sqrt {2+5 x^2+3 x^4}} \] Output:

7484/5103*x*(3*x^2+2)/(3*x^4+5*x^2+2)^(1/2)+1/1701*x*(5121*x^2+5935)*(3*x^ 
4+5*x^2+2)^(1/2)-137/189*x*(3*x^4+5*x^2+2)^(3/2)+2/27*x^3*(3*x^4+5*x^2+2)^ 
(3/2)-7484/5103*2^(1/2)*(x^2+1)*((3*x^2+2)/(x^2+1))^(1/2)*EllipticE(x/(x^2 
+1)^(1/2),1/2*I*2^(1/2))/(3*x^4+5*x^2+2)^(1/2)+3335/1701*2^(1/2)*(x^2+1)*( 
(3*x^2+2)/(x^2+1))^(1/2)*InverseJacobiAM(arctan(x),1/2*I*2^(1/2))/(3*x^4+5 
*x^2+2)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.12 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.69 \[ \int \left (1+2 x^2\right ) \left (4-7 x^2+x^4\right ) \sqrt {2+5 x^2+3 x^4} \, dx=\frac {3 x \left (6938+15761 x^2+309 x^4-16965 x^6-7317 x^8+1134 x^{10}\right )-7484 i \sqrt {3} \sqrt {1+x^2} \sqrt {2+3 x^2} E\left (i \text {arcsinh}\left (\sqrt {\frac {3}{2}} x\right )|\frac {2}{3}\right )+814 i \sqrt {3} \sqrt {1+x^2} \sqrt {2+3 x^2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {3}{2}} x\right ),\frac {2}{3}\right )}{5103 \sqrt {2+5 x^2+3 x^4}} \] Input:

Integrate[(1 + 2*x^2)*(4 - 7*x^2 + x^4)*Sqrt[2 + 5*x^2 + 3*x^4],x]
 

Output:

(3*x*(6938 + 15761*x^2 + 309*x^4 - 16965*x^6 - 7317*x^8 + 1134*x^10) - (74 
84*I)*Sqrt[3]*Sqrt[1 + x^2]*Sqrt[2 + 3*x^2]*EllipticE[I*ArcSinh[Sqrt[3/2]* 
x], 2/3] + (814*I)*Sqrt[3]*Sqrt[1 + x^2]*Sqrt[2 + 3*x^2]*EllipticF[I*ArcSi 
nh[Sqrt[3/2]*x], 2/3])/(5103*Sqrt[2 + 5*x^2 + 3*x^4])
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.08, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.265, Rules used = {2207, 27, 2207, 27, 1490, 27, 1503, 1413, 1456}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (2 x^2+1\right ) \left (x^4-7 x^2+4\right ) \sqrt {3 x^4+5 x^2+2} \, dx\)

\(\Big \downarrow \) 2207

\(\displaystyle \frac {1}{27} \int 3 \left (-137 x^4+5 x^2+36\right ) \sqrt {3 x^4+5 x^2+2}dx+\frac {2}{27} \left (3 x^4+5 x^2+2\right )^{3/2} x^3\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \int \left (-137 x^4+5 x^2+36\right ) \sqrt {3 x^4+5 x^2+2}dx+\frac {2}{27} \left (3 x^4+5 x^2+2\right )^{3/2} x^3\)

\(\Big \downarrow \) 2207

\(\displaystyle \frac {1}{9} \left (\frac {1}{21} \int 5 \left (569 x^2+206\right ) \sqrt {3 x^4+5 x^2+2}dx-\frac {137}{21} x \left (3 x^4+5 x^2+2\right )^{3/2}\right )+\frac {2}{27} \left (3 x^4+5 x^2+2\right )^{3/2} x^3\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (\frac {5}{21} \int \left (569 x^2+206\right ) \sqrt {3 x^4+5 x^2+2}dx-\frac {137}{21} x \left (3 x^4+5 x^2+2\right )^{3/2}\right )+\frac {2}{27} \left (3 x^4+5 x^2+2\right )^{3/2} x^3\)

\(\Big \downarrow \) 1490

\(\displaystyle \frac {1}{9} \left (\frac {5}{21} \left (\frac {1}{45} \int \frac {2 \left (3742 x^2+3335\right )}{\sqrt {3 x^4+5 x^2+2}}dx+\frac {1}{45} x \sqrt {3 x^4+5 x^2+2} \left (5121 x^2+5935\right )\right )-\frac {137}{21} x \left (3 x^4+5 x^2+2\right )^{3/2}\right )+\frac {2}{27} \left (3 x^4+5 x^2+2\right )^{3/2} x^3\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (\frac {5}{21} \left (\frac {2}{45} \int \frac {3742 x^2+3335}{\sqrt {3 x^4+5 x^2+2}}dx+\frac {1}{45} x \sqrt {3 x^4+5 x^2+2} \left (5121 x^2+5935\right )\right )-\frac {137}{21} x \left (3 x^4+5 x^2+2\right )^{3/2}\right )+\frac {2}{27} \left (3 x^4+5 x^2+2\right )^{3/2} x^3\)

\(\Big \downarrow \) 1503

\(\displaystyle \frac {1}{9} \left (\frac {5}{21} \left (\frac {2}{45} \left (3335 \int \frac {1}{\sqrt {3 x^4+5 x^2+2}}dx+3742 \int \frac {x^2}{\sqrt {3 x^4+5 x^2+2}}dx\right )+\frac {1}{45} x \sqrt {3 x^4+5 x^2+2} \left (5121 x^2+5935\right )\right )-\frac {137}{21} x \left (3 x^4+5 x^2+2\right )^{3/2}\right )+\frac {2}{27} \left (3 x^4+5 x^2+2\right )^{3/2} x^3\)

\(\Big \downarrow \) 1413

\(\displaystyle \frac {1}{9} \left (\frac {5}{21} \left (\frac {2}{45} \left (3742 \int \frac {x^2}{\sqrt {3 x^4+5 x^2+2}}dx+\frac {3335 \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^4+5 x^2+2}}\right )+\frac {1}{45} x \sqrt {3 x^4+5 x^2+2} \left (5121 x^2+5935\right )\right )-\frac {137}{21} x \left (3 x^4+5 x^2+2\right )^{3/2}\right )+\frac {2}{27} \left (3 x^4+5 x^2+2\right )^{3/2} x^3\)

\(\Big \downarrow \) 1456

\(\displaystyle \frac {1}{9} \left (\frac {5}{21} \left (\frac {2}{45} \left (\frac {3335 \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^4+5 x^2+2}}+3742 \left (\frac {x \left (3 x^2+2\right )}{3 \sqrt {3 x^4+5 x^2+2}}-\frac {\sqrt {2} \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} E\left (\arctan (x)\left |-\frac {1}{2}\right .\right )}{3 \sqrt {3 x^4+5 x^2+2}}\right )\right )+\frac {1}{45} x \sqrt {3 x^4+5 x^2+2} \left (5121 x^2+5935\right )\right )-\frac {137}{21} x \left (3 x^4+5 x^2+2\right )^{3/2}\right )+\frac {2}{27} \left (3 x^4+5 x^2+2\right )^{3/2} x^3\)

Input:

Int[(1 + 2*x^2)*(4 - 7*x^2 + x^4)*Sqrt[2 + 5*x^2 + 3*x^4],x]
 

Output:

(2*x^3*(2 + 5*x^2 + 3*x^4)^(3/2))/27 + ((-137*x*(2 + 5*x^2 + 3*x^4)^(3/2)) 
/21 + (5*((x*(5935 + 5121*x^2)*Sqrt[2 + 5*x^2 + 3*x^4])/45 + (2*(3742*((x* 
(2 + 3*x^2))/(3*Sqrt[2 + 5*x^2 + 3*x^4]) - (Sqrt[2]*(1 + x^2)*Sqrt[(2 + 3* 
x^2)/(1 + x^2)]*EllipticE[ArcTan[x], -1/2])/(3*Sqrt[2 + 5*x^2 + 3*x^4])) + 
 (3335*(1 + x^2)*Sqrt[(2 + 3*x^2)/(1 + x^2)]*EllipticF[ArcTan[x], -1/2])/( 
Sqrt[2]*Sqrt[2 + 5*x^2 + 3*x^4])))/45))/21)/9
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1413
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b 
^2 - 4*a*c, 2]}, Simp[(2*a + (b - q)*x^2)*(Sqrt[(2*a + (b + q)*x^2)/(2*a + 
(b - q)*x^2)]/(2*a*Rt[(b - q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF 
[ArcTan[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; 
 FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1456
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[b^2 - 4*a*c, 2]}, Simp[x*((b - q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4 
])), x] - Simp[Rt[(b - q)/(2*a), 2]*(2*a + (b - q)*x^2)*(Sqrt[(2*a + (b + q 
)*x^2)/(2*a + (b - q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan 
[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; FreeQ[ 
{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1490
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symb 
ol] :> Simp[x*(2*b*e*p + c*d*(4*p + 3) + c*e*(4*p + 1)*x^2)*((a + b*x^2 + c 
*x^4)^p/(c*(4*p + 1)*(4*p + 3))), x] + Simp[2*(p/(c*(4*p + 1)*(4*p + 3))) 
 Int[Simp[2*a*c*d*(4*p + 3) - a*b*e + (2*a*c*e*(4*p + 1) + b*c*d*(4*p + 3) 
- b^2*e*(2*p + 1))*x^2, x]*(a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, 
 b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 GtQ[p, 0] && FractionQ[p] && IntegerQ[2*p]
 

rule 1503
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[d   Int[1/Sqrt[a + b*x^2 + c*x^4] 
, x], x] + Simp[e   Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b + q) 
/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 2207
Int[(Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{n = 
 Expon[Px, x^2], e = Coeff[Px, x^2, Expon[Px, x^2]]}, Simp[e*x^(2*n - 3)*(( 
a + b*x^2 + c*x^4)^(p + 1)/(c*(2*n + 4*p + 1))), x] + Simp[1/(c*(2*n + 4*p 
+ 1))   Int[(a + b*x^2 + c*x^4)^p*ExpandToSum[c*(2*n + 4*p + 1)*Px - a*e*(2 
*n - 3)*x^(2*n - 4) - b*e*(2*n + 2*p - 1)*x^(2*n - 2) - c*e*(2*n + 4*p + 1) 
*x^(2*n), x], x], x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Px, x^2] && Expon[ 
Px, x^2] > 1 && NeQ[b^2 - 4*a*c, 0] &&  !LtQ[p, -1]
 
Maple [A] (verified)

Time = 7.08 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.64

method result size
risch \(\frac {x \left (378 x^{6}-3069 x^{4}-792 x^{2}+3469\right ) \sqrt {3 x^{4}+5 x^{2}+2}}{1701}-\frac {3335 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )}{1701 \sqrt {3 x^{4}+5 x^{2}+2}}+\frac {7484 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \left (\operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )-\operatorname {EllipticE}\left (i x , \frac {\sqrt {6}}{2}\right )\right )}{5103 \sqrt {3 x^{4}+5 x^{2}+2}}\) \(135\)
default \(-\frac {88 x^{3} \sqrt {3 x^{4}+5 x^{2}+2}}{189}+\frac {3469 x \sqrt {3 x^{4}+5 x^{2}+2}}{1701}-\frac {3335 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )}{1701 \sqrt {3 x^{4}+5 x^{2}+2}}+\frac {7484 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \left (\operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )-\operatorname {EllipticE}\left (i x , \frac {\sqrt {6}}{2}\right )\right )}{5103 \sqrt {3 x^{4}+5 x^{2}+2}}-\frac {341 x^{5} \sqrt {3 x^{4}+5 x^{2}+2}}{189}+\frac {2 x^{7} \sqrt {3 x^{4}+5 x^{2}+2}}{9}\) \(175\)
elliptic \(-\frac {88 x^{3} \sqrt {3 x^{4}+5 x^{2}+2}}{189}+\frac {3469 x \sqrt {3 x^{4}+5 x^{2}+2}}{1701}-\frac {3335 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )}{1701 \sqrt {3 x^{4}+5 x^{2}+2}}+\frac {7484 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \left (\operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )-\operatorname {EllipticE}\left (i x , \frac {\sqrt {6}}{2}\right )\right )}{5103 \sqrt {3 x^{4}+5 x^{2}+2}}-\frac {341 x^{5} \sqrt {3 x^{4}+5 x^{2}+2}}{189}+\frac {2 x^{7} \sqrt {3 x^{4}+5 x^{2}+2}}{9}\) \(175\)

Input:

int((2*x^2+1)*(x^4-7*x^2+4)*(3*x^4+5*x^2+2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/1701*x*(378*x^6-3069*x^4-792*x^2+3469)*(3*x^4+5*x^2+2)^(1/2)-3335/1701*I 
*(x^2+1)^(1/2)*(6*x^2+4)^(1/2)/(3*x^4+5*x^2+2)^(1/2)*EllipticF(I*x,1/2*6^( 
1/2))+7484/5103*I*(x^2+1)^(1/2)*(6*x^2+4)^(1/2)/(3*x^4+5*x^2+2)^(1/2)*(Ell 
ipticF(I*x,1/2*6^(1/2))-EllipticE(I*x,1/2*6^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.39 \[ \int \left (1+2 x^2\right ) \left (4-7 x^2+x^4\right ) \sqrt {2+5 x^2+3 x^4} \, dx=-\frac {14968 \, \sqrt {3} \sqrt {-\frac {2}{3}} x E(\arcsin \left (\frac {\sqrt {-\frac {2}{3}}}{x}\right )\,|\,\frac {3}{2}) - 44983 \, \sqrt {3} \sqrt {-\frac {2}{3}} x F(\arcsin \left (\frac {\sqrt {-\frac {2}{3}}}{x}\right )\,|\,\frac {3}{2}) - 3 \, {\left (1134 \, x^{8} - 9207 \, x^{6} - 2376 \, x^{4} + 10407 \, x^{2} + 7484\right )} \sqrt {3 \, x^{4} + 5 \, x^{2} + 2}}{15309 \, x} \] Input:

integrate((2*x^2+1)*(x^4-7*x^2+4)*(3*x^4+5*x^2+2)^(1/2),x, algorithm="fric 
as")
 

Output:

-1/15309*(14968*sqrt(3)*sqrt(-2/3)*x*elliptic_e(arcsin(sqrt(-2/3)/x), 3/2) 
 - 44983*sqrt(3)*sqrt(-2/3)*x*elliptic_f(arcsin(sqrt(-2/3)/x), 3/2) - 3*(1 
134*x^8 - 9207*x^6 - 2376*x^4 + 10407*x^2 + 7484)*sqrt(3*x^4 + 5*x^2 + 2)) 
/x
 

Sympy [F]

\[ \int \left (1+2 x^2\right ) \left (4-7 x^2+x^4\right ) \sqrt {2+5 x^2+3 x^4} \, dx=\int \sqrt {\left (x^{2} + 1\right ) \left (3 x^{2} + 2\right )} \left (2 x^{2} + 1\right ) \left (x^{4} - 7 x^{2} + 4\right )\, dx \] Input:

integrate((2*x**2+1)*(x**4-7*x**2+4)*(3*x**4+5*x**2+2)**(1/2),x)
 

Output:

Integral(sqrt((x**2 + 1)*(3*x**2 + 2))*(2*x**2 + 1)*(x**4 - 7*x**2 + 4), x 
)
 

Maxima [F]

\[ \int \left (1+2 x^2\right ) \left (4-7 x^2+x^4\right ) \sqrt {2+5 x^2+3 x^4} \, dx=\int { \sqrt {3 \, x^{4} + 5 \, x^{2} + 2} {\left (x^{4} - 7 \, x^{2} + 4\right )} {\left (2 \, x^{2} + 1\right )} \,d x } \] Input:

integrate((2*x^2+1)*(x^4-7*x^2+4)*(3*x^4+5*x^2+2)^(1/2),x, algorithm="maxi 
ma")
 

Output:

integrate(sqrt(3*x^4 + 5*x^2 + 2)*(x^4 - 7*x^2 + 4)*(2*x^2 + 1), x)
 

Giac [F]

\[ \int \left (1+2 x^2\right ) \left (4-7 x^2+x^4\right ) \sqrt {2+5 x^2+3 x^4} \, dx=\int { \sqrt {3 \, x^{4} + 5 \, x^{2} + 2} {\left (x^{4} - 7 \, x^{2} + 4\right )} {\left (2 \, x^{2} + 1\right )} \,d x } \] Input:

integrate((2*x^2+1)*(x^4-7*x^2+4)*(3*x^4+5*x^2+2)^(1/2),x, algorithm="giac 
")
 

Output:

integrate(sqrt(3*x^4 + 5*x^2 + 2)*(x^4 - 7*x^2 + 4)*(2*x^2 + 1), x)
 

Mupad [F(-1)]

Timed out. \[ \int \left (1+2 x^2\right ) \left (4-7 x^2+x^4\right ) \sqrt {2+5 x^2+3 x^4} \, dx=\int \left (2\,x^2+1\right )\,\left (x^4-7\,x^2+4\right )\,\sqrt {3\,x^4+5\,x^2+2} \,d x \] Input:

int((2*x^2 + 1)*(x^4 - 7*x^2 + 4)*(5*x^2 + 3*x^4 + 2)^(1/2),x)
 

Output:

int((2*x^2 + 1)*(x^4 - 7*x^2 + 4)*(5*x^2 + 3*x^4 + 2)^(1/2), x)
 

Reduce [F]

\[ \int \left (1+2 x^2\right ) \left (4-7 x^2+x^4\right ) \sqrt {2+5 x^2+3 x^4} \, dx=\frac {2 \sqrt {3 x^{4}+5 x^{2}+2}\, x^{7}}{9}-\frac {341 \sqrt {3 x^{4}+5 x^{2}+2}\, x^{5}}{189}-\frac {88 \sqrt {3 x^{4}+5 x^{2}+2}\, x^{3}}{189}+\frac {3469 \sqrt {3 x^{4}+5 x^{2}+2}\, x}{1701}+\frac {6670 \left (\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}}{3 x^{4}+5 x^{2}+2}d x \right )}{1701}+\frac {7484 \left (\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}\, x^{2}}{3 x^{4}+5 x^{2}+2}d x \right )}{1701} \] Input:

int((2*x^2+1)*(x^4-7*x^2+4)*(3*x^4+5*x^2+2)^(1/2),x)
 

Output:

(378*sqrt(3*x**4 + 5*x**2 + 2)*x**7 - 3069*sqrt(3*x**4 + 5*x**2 + 2)*x**5 
- 792*sqrt(3*x**4 + 5*x**2 + 2)*x**3 + 3469*sqrt(3*x**4 + 5*x**2 + 2)*x + 
6670*int(sqrt(3*x**4 + 5*x**2 + 2)/(3*x**4 + 5*x**2 + 2),x) + 7484*int((sq 
rt(3*x**4 + 5*x**2 + 2)*x**2)/(3*x**4 + 5*x**2 + 2),x))/1701