\(\int \frac {4-7 x^2+x^4}{(1+2 x^2)^2 \sqrt {2+5 x^2+3 x^4}} \, dx\) [209]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 36, antiderivative size = 235 \[ \int \frac {4-7 x^2+x^4}{\left (1+2 x^2\right )^2 \sqrt {2+5 x^2+3 x^4}} \, dx=-\frac {31 x \left (2+3 x^2\right )}{4 \sqrt {2+5 x^2+3 x^4}}+\frac {31 x \sqrt {2+5 x^2+3 x^4}}{2 \left (1+2 x^2\right )}+\frac {31 \left (1+x^2\right ) \sqrt {\frac {2+3 x^2}{1+x^2}} E\left (\arctan (x)\left |-\frac {1}{2}\right .\right )}{2 \sqrt {2} \sqrt {2+5 x^2+3 x^4}}+\frac {71 \left (1+x^2\right ) \sqrt {\frac {2+3 x^2}{1+x^2}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{2 \sqrt {2} \sqrt {2+5 x^2+3 x^4}}-\frac {125 \left (1+x^2\right ) \operatorname {EllipticPi}\left (-\frac {1}{3},\arctan \left (\sqrt {\frac {3}{2}} x\right ),\frac {1}{3}\right )}{2 \sqrt {3} \sqrt {\frac {1+x^2}{2+3 x^2}} \sqrt {2+5 x^2+3 x^4}} \] Output:

-31/4*x*(3*x^2+2)/(3*x^4+5*x^2+2)^(1/2)+31*x*(3*x^4+5*x^2+2)^(1/2)/(4*x^2+ 
2)+31/4*2^(1/2)*(x^2+1)*((3*x^2+2)/(x^2+1))^(1/2)*EllipticE(x/(x^2+1)^(1/2 
),1/2*I*2^(1/2))/(3*x^4+5*x^2+2)^(1/2)+71/4*2^(1/2)*(x^2+1)*((3*x^2+2)/(x^ 
2+1))^(1/2)*InverseJacobiAM(arctan(x),1/2*I*2^(1/2))/(3*x^4+5*x^2+2)^(1/2) 
-125/6*(x^2+1)*EllipticPi(x*6^(1/2)/(6*x^2+4)^(1/2),-1/3,1/3*3^(1/2))*3^(1 
/2)/((x^2+1)/(3*x^2+2))^(1/2)/(3*x^4+5*x^2+2)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.48 (sec) , antiderivative size = 189, normalized size of antiderivative = 0.80 \[ \int \frac {4-7 x^2+x^4}{\left (1+2 x^2\right )^2 \sqrt {2+5 x^2+3 x^4}} \, dx=\frac {\frac {372 x \left (2+5 x^2+3 x^4\right )}{1+2 x^2}+186 i \sqrt {3} \sqrt {1+x^2} \sqrt {2+3 x^2} E\left (i \text {arcsinh}\left (\sqrt {\frac {3}{2}} x\right )|\frac {2}{3}\right )-95 i \sqrt {3} \sqrt {1+x^2} \sqrt {2+3 x^2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {3}{2}} x\right ),\frac {2}{3}\right )+125 i \sqrt {3} \sqrt {1+x^2} \sqrt {2+3 x^2} \operatorname {EllipticPi}\left (\frac {4}{3},i \text {arcsinh}\left (\sqrt {\frac {3}{2}} x\right ),\frac {2}{3}\right )}{24 \sqrt {2+5 x^2+3 x^4}} \] Input:

Integrate[(4 - 7*x^2 + x^4)/((1 + 2*x^2)^2*Sqrt[2 + 5*x^2 + 3*x^4]),x]
 

Output:

((372*x*(2 + 5*x^2 + 3*x^4))/(1 + 2*x^2) + (186*I)*Sqrt[3]*Sqrt[1 + x^2]*S 
qrt[2 + 3*x^2]*EllipticE[I*ArcSinh[Sqrt[3/2]*x], 2/3] - (95*I)*Sqrt[3]*Sqr 
t[1 + x^2]*Sqrt[2 + 3*x^2]*EllipticF[I*ArcSinh[Sqrt[3/2]*x], 2/3] + (125*I 
)*Sqrt[3]*Sqrt[1 + x^2]*Sqrt[2 + 3*x^2]*EllipticPi[4/3, I*ArcSinh[Sqrt[3/2 
]*x], 2/3])/(24*Sqrt[2 + 5*x^2 + 3*x^4])
 

Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 302, normalized size of antiderivative = 1.29, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.306, Rules used = {2210, 2234, 25, 1503, 1413, 1456, 1538, 27, 1413, 1786, 414}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4-7 x^2+4}{\left (2 x^2+1\right )^2 \sqrt {3 x^4+5 x^2+2}} \, dx\)

\(\Big \downarrow \) 2210

\(\displaystyle \frac {31 x \sqrt {3 x^4+5 x^2+2}}{2 \left (2 x^2+1\right )}-\frac {1}{2} \int \frac {93 x^4+92 x^2+54}{\left (2 x^2+1\right ) \sqrt {3 x^4+5 x^2+2}}dx\)

\(\Big \downarrow \) 2234

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \int -\frac {186 x^2+91}{\sqrt {3 x^4+5 x^2+2}}dx-\frac {125}{4} \int \frac {1}{\left (2 x^2+1\right ) \sqrt {3 x^4+5 x^2+2}}dx\right )+\frac {31 \sqrt {3 x^4+5 x^2+2} x}{2 \left (2 x^2+1\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (-\frac {125}{4} \int \frac {1}{\left (2 x^2+1\right ) \sqrt {3 x^4+5 x^2+2}}dx-\frac {1}{4} \int \frac {186 x^2+91}{\sqrt {3 x^4+5 x^2+2}}dx\right )+\frac {31 \sqrt {3 x^4+5 x^2+2} x}{2 \left (2 x^2+1\right )}\)

\(\Big \downarrow \) 1503

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (-91 \int \frac {1}{\sqrt {3 x^4+5 x^2+2}}dx-186 \int \frac {x^2}{\sqrt {3 x^4+5 x^2+2}}dx\right )-\frac {125}{4} \int \frac {1}{\left (2 x^2+1\right ) \sqrt {3 x^4+5 x^2+2}}dx\right )+\frac {31 \sqrt {3 x^4+5 x^2+2} x}{2 \left (2 x^2+1\right )}\)

\(\Big \downarrow \) 1413

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (-186 \int \frac {x^2}{\sqrt {3 x^4+5 x^2+2}}dx-\frac {91 \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^4+5 x^2+2}}\right )-\frac {125}{4} \int \frac {1}{\left (2 x^2+1\right ) \sqrt {3 x^4+5 x^2+2}}dx\right )+\frac {31 \sqrt {3 x^4+5 x^2+2} x}{2 \left (2 x^2+1\right )}\)

\(\Big \downarrow \) 1456

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (-\frac {91 \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^4+5 x^2+2}}-186 \left (\frac {x \left (3 x^2+2\right )}{3 \sqrt {3 x^4+5 x^2+2}}-\frac {\sqrt {2} \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} E\left (\arctan (x)\left |-\frac {1}{2}\right .\right )}{3 \sqrt {3 x^4+5 x^2+2}}\right )\right )-\frac {125}{4} \int \frac {1}{\left (2 x^2+1\right ) \sqrt {3 x^4+5 x^2+2}}dx\right )+\frac {31 \sqrt {3 x^4+5 x^2+2} x}{2 \left (2 x^2+1\right )}\)

\(\Big \downarrow \) 1538

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (-\frac {91 \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^4+5 x^2+2}}-186 \left (\frac {x \left (3 x^2+2\right )}{3 \sqrt {3 x^4+5 x^2+2}}-\frac {\sqrt {2} \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} E\left (\arctan (x)\left |-\frac {1}{2}\right .\right )}{3 \sqrt {3 x^4+5 x^2+2}}\right )\right )-\frac {125}{4} \left (\int \frac {2 \left (3 x^2+2\right )}{\left (2 x^2+1\right ) \sqrt {3 x^4+5 x^2+2}}dx-3 \int \frac {1}{\sqrt {3 x^4+5 x^2+2}}dx\right )\right )+\frac {31 \sqrt {3 x^4+5 x^2+2} x}{2 \left (2 x^2+1\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (-\frac {91 \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^4+5 x^2+2}}-186 \left (\frac {x \left (3 x^2+2\right )}{3 \sqrt {3 x^4+5 x^2+2}}-\frac {\sqrt {2} \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} E\left (\arctan (x)\left |-\frac {1}{2}\right .\right )}{3 \sqrt {3 x^4+5 x^2+2}}\right )\right )-\frac {125}{4} \left (2 \int \frac {3 x^2+2}{\left (2 x^2+1\right ) \sqrt {3 x^4+5 x^2+2}}dx-3 \int \frac {1}{\sqrt {3 x^4+5 x^2+2}}dx\right )\right )+\frac {31 \sqrt {3 x^4+5 x^2+2} x}{2 \left (2 x^2+1\right )}\)

\(\Big \downarrow \) 1413

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (-\frac {91 \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^4+5 x^2+2}}-186 \left (\frac {x \left (3 x^2+2\right )}{3 \sqrt {3 x^4+5 x^2+2}}-\frac {\sqrt {2} \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} E\left (\arctan (x)\left |-\frac {1}{2}\right .\right )}{3 \sqrt {3 x^4+5 x^2+2}}\right )\right )-\frac {125}{4} \left (2 \int \frac {3 x^2+2}{\left (2 x^2+1\right ) \sqrt {3 x^4+5 x^2+2}}dx-\frac {3 \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^4+5 x^2+2}}\right )\right )+\frac {31 \sqrt {3 x^4+5 x^2+2} x}{2 \left (2 x^2+1\right )}\)

\(\Big \downarrow \) 1786

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (-\frac {91 \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^4+5 x^2+2}}-186 \left (\frac {x \left (3 x^2+2\right )}{3 \sqrt {3 x^4+5 x^2+2}}-\frac {\sqrt {2} \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} E\left (\arctan (x)\left |-\frac {1}{2}\right .\right )}{3 \sqrt {3 x^4+5 x^2+2}}\right )\right )-\frac {125}{4} \left (\frac {2 \sqrt {x^2+1} \sqrt {3 x^2+2} \int \frac {\sqrt {3 x^2+2}}{\sqrt {x^2+1} \left (2 x^2+1\right )}dx}{\sqrt {3 x^4+5 x^2+2}}-\frac {3 \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^4+5 x^2+2}}\right )\right )+\frac {31 \sqrt {3 x^4+5 x^2+2} x}{2 \left (2 x^2+1\right )}\)

\(\Big \downarrow \) 414

\(\displaystyle \frac {1}{2} \left (\frac {1}{4} \left (-\frac {91 \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^4+5 x^2+2}}-186 \left (\frac {x \left (3 x^2+2\right )}{3 \sqrt {3 x^4+5 x^2+2}}-\frac {\sqrt {2} \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} E\left (\arctan (x)\left |-\frac {1}{2}\right .\right )}{3 \sqrt {3 x^4+5 x^2+2}}\right )\right )-\frac {125}{4} \left (\frac {4 \left (x^2+1\right ) \operatorname {EllipticPi}\left (-\frac {1}{3},\arctan \left (\sqrt {\frac {3}{2}} x\right ),\frac {1}{3}\right )}{\sqrt {3} \sqrt {\frac {x^2+1}{3 x^2+2}} \sqrt {3 x^4+5 x^2+2}}-\frac {3 \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^4+5 x^2+2}}\right )\right )+\frac {31 \sqrt {3 x^4+5 x^2+2} x}{2 \left (2 x^2+1\right )}\)

Input:

Int[(4 - 7*x^2 + x^4)/((1 + 2*x^2)^2*Sqrt[2 + 5*x^2 + 3*x^4]),x]
 

Output:

(31*x*Sqrt[2 + 5*x^2 + 3*x^4])/(2*(1 + 2*x^2)) + ((-186*((x*(2 + 3*x^2))/( 
3*Sqrt[2 + 5*x^2 + 3*x^4]) - (Sqrt[2]*(1 + x^2)*Sqrt[(2 + 3*x^2)/(1 + x^2) 
]*EllipticE[ArcTan[x], -1/2])/(3*Sqrt[2 + 5*x^2 + 3*x^4])) - (91*(1 + x^2) 
*Sqrt[(2 + 3*x^2)/(1 + x^2)]*EllipticF[ArcTan[x], -1/2])/(Sqrt[2]*Sqrt[2 + 
 5*x^2 + 3*x^4]))/4 - (125*((-3*(1 + x^2)*Sqrt[(2 + 3*x^2)/(1 + x^2)]*Elli 
pticF[ArcTan[x], -1/2])/(Sqrt[2]*Sqrt[2 + 5*x^2 + 3*x^4]) + (4*(1 + x^2)*E 
llipticPi[-1/3, ArcTan[Sqrt[3/2]*x], 1/3])/(Sqrt[3]*Sqrt[(1 + x^2)/(2 + 3* 
x^2)]*Sqrt[2 + 5*x^2 + 3*x^4])))/4)/2
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 414
Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_) 
^2]), x_Symbol] :> Simp[c*(Sqrt[e + f*x^2]/(a*e*Rt[d/c, 2]*Sqrt[c + d*x^2]* 
Sqrt[c*((e + f*x^2)/(e*(c + d*x^2)))]))*EllipticPi[1 - b*(c/(a*d)), ArcTan[ 
Rt[d/c, 2]*x], 1 - c*(f/(d*e))], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ 
[d/c]
 

rule 1413
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b 
^2 - 4*a*c, 2]}, Simp[(2*a + (b - q)*x^2)*(Sqrt[(2*a + (b + q)*x^2)/(2*a + 
(b - q)*x^2)]/(2*a*Rt[(b - q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF 
[ArcTan[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; 
 FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1456
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[b^2 - 4*a*c, 2]}, Simp[x*((b - q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4 
])), x] - Simp[Rt[(b - q)/(2*a), 2]*(2*a + (b - q)*x^2)*(Sqrt[(2*a + (b + q 
)*x^2)/(2*a + (b - q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan 
[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; FreeQ[ 
{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1503
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[d   Int[1/Sqrt[a + b*x^2 + c*x^4] 
, x], x] + Simp[e   Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b + q) 
/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1538
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_S 
ymbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/(2*c*d - e*(b - q)))   I 
nt[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Simp[e/(2*c*d - e*(b - q))   Int[(b 
- q + 2*c*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, 
b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 !LtQ[c, 0]
 

rule 1786
Int[((d_) + (e_.)*(x_)^(n_))^(q_.)*((f_) + (g_.)*(x_)^(n_))^(r_.)*((a_) + ( 
b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[(a + b*x^n + c*x 
^(2*n))^FracPart[p]/((d + e*x^n)^FracPart[p]*(a/d + (c*x^n)/e)^FracPart[p]) 
   Int[(d + e*x^n)^(p + q)*(f + g*x^n)^r*(a/d + (c/e)*x^n)^p, x], x] /; Fre 
eQ[{a, b, c, d, e, f, g, n, p, q, r}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c 
, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p]
 

rule 2210
Int[((P4x_)*((d_) + (e_.)*(x_)^2)^(q_))/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x 
_)^4], x_Symbol] :> With[{A = Coeff[P4x, x, 0], B = Coeff[P4x, x, 2], C = C 
oeff[P4x, x, 4]}, Simp[(-(C*d^2 - B*d*e + A*e^2))*x*(d + e*x^2)^(q + 1)*(Sq 
rt[a + b*x^2 + c*x^4]/(2*d*(q + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/( 
2*d*(q + 1)*(c*d^2 - b*d*e + a*e^2))   Int[((d + e*x^2)^(q + 1)/Sqrt[a + b* 
x^2 + c*x^4])*Simp[a*d*(C*d - B*e) + A*(a*e^2*(2*q + 3) + 2*d*(c*d - b*e)*( 
q + 1)) - 2*((B*d - A*e)*(b*e*(q + 2) - c*d*(q + 1)) - C*d*(b*d + a*e*(q + 
1)))*x^2 + c*(C*d^2 - B*d*e + A*e^2)*(2*q + 5)*x^4, x], x], x]] /; FreeQ[{a 
, b, c, d, e}, x] && PolyQ[P4x, x^2] && LeQ[Expon[P4x, x], 4] && ILtQ[q, -1 
]
 

rule 2234
Int[(P4x_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{A = Coeff[P4x, x, 0], B = Coeff[P4x, x, 2], C = Coeff[ 
P4x, x, 4]}, Simp[-(e^2)^(-1)   Int[(C*d - B*e - C*e*x^2)/Sqrt[a + b*x^2 + 
c*x^4], x], x] + Simp[(C*d^2 - B*d*e + A*e^2)/e^2   Int[1/((d + e*x^2)*Sqrt 
[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[P4x, x^ 
2, 2] && NeQ[c*d^2 - a*e^2, 0]
 
Maple [A] (verified)

Time = 6.92 (sec) , antiderivative size = 162, normalized size of antiderivative = 0.69

method result size
default \(-\frac {33 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )}{16 \sqrt {3 x^{4}+5 x^{2}+2}}+\frac {31 x \sqrt {3 x^{4}+5 x^{2}+2}}{2 \left (2 x^{2}+1\right )}+\frac {31 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \operatorname {EllipticE}\left (i x , \frac {\sqrt {6}}{2}\right )}{4 \sqrt {3 x^{4}+5 x^{2}+2}}+\frac {125 i \sqrt {x^{2}+1}\, \sqrt {1+\frac {3 x^{2}}{2}}\, \operatorname {EllipticPi}\left (i x , 2, \frac {i \sqrt {-3}\, \sqrt {2}}{2}\right )}{8 \sqrt {3 x^{4}+5 x^{2}+2}}\) \(162\)
elliptic \(-\frac {33 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )}{16 \sqrt {3 x^{4}+5 x^{2}+2}}+\frac {31 x \sqrt {3 x^{4}+5 x^{2}+2}}{2 \left (2 x^{2}+1\right )}+\frac {31 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \operatorname {EllipticE}\left (i x , \frac {\sqrt {6}}{2}\right )}{4 \sqrt {3 x^{4}+5 x^{2}+2}}+\frac {125 i \sqrt {x^{2}+1}\, \sqrt {1+\frac {3 x^{2}}{2}}\, \operatorname {EllipticPi}\left (i x , 2, \frac {i \sqrt {-3}\, \sqrt {2}}{2}\right )}{8 \sqrt {3 x^{4}+5 x^{2}+2}}\) \(162\)
risch \(\frac {31 x \sqrt {3 x^{4}+5 x^{2}+2}}{2 \left (2 x^{2}+1\right )}+\frac {91 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )}{16 \sqrt {3 x^{4}+5 x^{2}+2}}-\frac {31 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \left (\operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )-\operatorname {EllipticE}\left (i x , \frac {\sqrt {6}}{2}\right )\right )}{4 \sqrt {3 x^{4}+5 x^{2}+2}}+\frac {125 i \sqrt {x^{2}+1}\, \sqrt {1+\frac {3 x^{2}}{2}}\, \operatorname {EllipticPi}\left (i x , 2, \frac {i \sqrt {-3}\, \sqrt {2}}{2}\right )}{8 \sqrt {3 x^{4}+5 x^{2}+2}}\) \(175\)

Input:

int((x^4-7*x^2+4)/(2*x^2+1)^2/(3*x^4+5*x^2+2)^(1/2),x,method=_RETURNVERBOS 
E)
                                                                                    
                                                                                    
 

Output:

-33/16*I*(x^2+1)^(1/2)*(6*x^2+4)^(1/2)/(3*x^4+5*x^2+2)^(1/2)*EllipticF(I*x 
,1/2*6^(1/2))+31/2*x*(3*x^4+5*x^2+2)^(1/2)/(2*x^2+1)+31/4*I*(x^2+1)^(1/2)* 
(6*x^2+4)^(1/2)/(3*x^4+5*x^2+2)^(1/2)*EllipticE(I*x,1/2*6^(1/2))+125/8*I*( 
x^2+1)^(1/2)*(1+3/2*x^2)^(1/2)/(3*x^4+5*x^2+2)^(1/2)*EllipticPi(I*x,2,1/2* 
I*(-3)^(1/2)*2^(1/2))
 

Fricas [F]

\[ \int \frac {4-7 x^2+x^4}{\left (1+2 x^2\right )^2 \sqrt {2+5 x^2+3 x^4}} \, dx=\int { \frac {x^{4} - 7 \, x^{2} + 4}{\sqrt {3 \, x^{4} + 5 \, x^{2} + 2} {\left (2 \, x^{2} + 1\right )}^{2}} \,d x } \] Input:

integrate((x^4-7*x^2+4)/(2*x^2+1)^2/(3*x^4+5*x^2+2)^(1/2),x, algorithm="fr 
icas")
 

Output:

integral(sqrt(3*x^4 + 5*x^2 + 2)*(x^4 - 7*x^2 + 4)/(12*x^8 + 32*x^6 + 31*x 
^4 + 13*x^2 + 2), x)
 

Sympy [F]

\[ \int \frac {4-7 x^2+x^4}{\left (1+2 x^2\right )^2 \sqrt {2+5 x^2+3 x^4}} \, dx=\int \frac {x^{4} - 7 x^{2} + 4}{\sqrt {\left (x^{2} + 1\right ) \left (3 x^{2} + 2\right )} \left (2 x^{2} + 1\right )^{2}}\, dx \] Input:

integrate((x**4-7*x**2+4)/(2*x**2+1)**2/(3*x**4+5*x**2+2)**(1/2),x)
 

Output:

Integral((x**4 - 7*x**2 + 4)/(sqrt((x**2 + 1)*(3*x**2 + 2))*(2*x**2 + 1)** 
2), x)
 

Maxima [F]

\[ \int \frac {4-7 x^2+x^4}{\left (1+2 x^2\right )^2 \sqrt {2+5 x^2+3 x^4}} \, dx=\int { \frac {x^{4} - 7 \, x^{2} + 4}{\sqrt {3 \, x^{4} + 5 \, x^{2} + 2} {\left (2 \, x^{2} + 1\right )}^{2}} \,d x } \] Input:

integrate((x^4-7*x^2+4)/(2*x^2+1)^2/(3*x^4+5*x^2+2)^(1/2),x, algorithm="ma 
xima")
 

Output:

integrate((x^4 - 7*x^2 + 4)/(sqrt(3*x^4 + 5*x^2 + 2)*(2*x^2 + 1)^2), x)
 

Giac [F]

\[ \int \frac {4-7 x^2+x^4}{\left (1+2 x^2\right )^2 \sqrt {2+5 x^2+3 x^4}} \, dx=\int { \frac {x^{4} - 7 \, x^{2} + 4}{\sqrt {3 \, x^{4} + 5 \, x^{2} + 2} {\left (2 \, x^{2} + 1\right )}^{2}} \,d x } \] Input:

integrate((x^4-7*x^2+4)/(2*x^2+1)^2/(3*x^4+5*x^2+2)^(1/2),x, algorithm="gi 
ac")
 

Output:

integrate((x^4 - 7*x^2 + 4)/(sqrt(3*x^4 + 5*x^2 + 2)*(2*x^2 + 1)^2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {4-7 x^2+x^4}{\left (1+2 x^2\right )^2 \sqrt {2+5 x^2+3 x^4}} \, dx=\int \frac {x^4-7\,x^2+4}{{\left (2\,x^2+1\right )}^2\,\sqrt {3\,x^4+5\,x^2+2}} \,d x \] Input:

int((x^4 - 7*x^2 + 4)/((2*x^2 + 1)^2*(5*x^2 + 3*x^4 + 2)^(1/2)),x)
 

Output:

int((x^4 - 7*x^2 + 4)/((2*x^2 + 1)^2*(5*x^2 + 3*x^4 + 2)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {4-7 x^2+x^4}{\left (1+2 x^2\right )^2 \sqrt {2+5 x^2+3 x^4}} \, dx=4 \left (\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}}{12 x^{8}+32 x^{6}+31 x^{4}+13 x^{2}+2}d x \right )+\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}\, x^{4}}{12 x^{8}+32 x^{6}+31 x^{4}+13 x^{2}+2}d x -7 \left (\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}\, x^{2}}{12 x^{8}+32 x^{6}+31 x^{4}+13 x^{2}+2}d x \right ) \] Input:

int((x^4-7*x^2+4)/(2*x^2+1)^2/(3*x^4+5*x^2+2)^(1/2),x)
 

Output:

4*int(sqrt(3*x**4 + 5*x**2 + 2)/(12*x**8 + 32*x**6 + 31*x**4 + 13*x**2 + 2 
),x) + int((sqrt(3*x**4 + 5*x**2 + 2)*x**4)/(12*x**8 + 32*x**6 + 31*x**4 + 
 13*x**2 + 2),x) - 7*int((sqrt(3*x**4 + 5*x**2 + 2)*x**2)/(12*x**8 + 32*x* 
*6 + 31*x**4 + 13*x**2 + 2),x)