\(\int \frac {(1+2 x^2)^2 (4-7 x^2+x^4)}{(2+5 x^2+3 x^4)^{5/2}} \, dx\) [219]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 36, antiderivative size = 160 \[ \int \frac {\left (1+2 x^2\right )^2 \left (4-7 x^2+x^4\right )}{\left (2+5 x^2+3 x^4\right )^{5/2}} \, dx=\frac {x \left (257+365 x^2\right )}{27 \left (2+5 x^2+3 x^4\right )^{3/2}}-\frac {733 x}{18 \sqrt {2+5 x^2+3 x^4}}-\frac {4171 \left (1+x^2\right ) \sqrt {\frac {2+3 x^2}{1+x^2}} E\left (\arctan (x)\left |-\frac {1}{2}\right .\right )}{27 \sqrt {2} \sqrt {2+5 x^2+3 x^4}}+\frac {1723 \left (1+x^2\right ) \sqrt {\frac {2+3 x^2}{1+x^2}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{9 \sqrt {2} \sqrt {2+5 x^2+3 x^4}} \] Output:

1/27*x*(365*x^2+257)/(3*x^4+5*x^2+2)^(3/2)-733/18*x/(3*x^4+5*x^2+2)^(1/2)- 
4171/54*2^(1/2)*(x^2+1)*((3*x^2+2)/(x^2+1))^(1/2)*EllipticE(x/(x^2+1)^(1/2 
),1/2*I*2^(1/2))/(3*x^4+5*x^2+2)^(1/2)+1723/18*2^(1/2)*(x^2+1)*((3*x^2+2)/ 
(x^2+1))^(1/2)*InverseJacobiAM(arctan(x),1/2*I*2^(1/2))/(3*x^4+5*x^2+2)^(1 
/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.21 (sec) , antiderivative size = 159, normalized size of antiderivative = 0.99 \[ \int \frac {\left (1+2 x^2\right )^2 \left (4-7 x^2+x^4\right )}{\left (2+5 x^2+3 x^4\right )^{5/2}} \, dx=\frac {-3 x \left (6856+25667 x^2+31396 x^4+12513 x^6\right )-4171 i \sqrt {3} \sqrt {1+x^2} \sqrt {2+3 x^2} \left (2+5 x^2+3 x^4\right ) E\left (i \text {arcsinh}\left (\sqrt {\frac {3}{2}} x\right )|\frac {2}{3}\right )+725 i \sqrt {3} \sqrt {1+x^2} \sqrt {2+3 x^2} \left (2+5 x^2+3 x^4\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {3}{2}} x\right ),\frac {2}{3}\right )}{54 \left (2+5 x^2+3 x^4\right )^{3/2}} \] Input:

Integrate[((1 + 2*x^2)^2*(4 - 7*x^2 + x^4))/(2 + 5*x^2 + 3*x^4)^(5/2),x]
 

Output:

(-3*x*(6856 + 25667*x^2 + 31396*x^4 + 12513*x^6) - (4171*I)*Sqrt[3]*Sqrt[1 
 + x^2]*Sqrt[2 + 3*x^2]*(2 + 5*x^2 + 3*x^4)*EllipticE[I*ArcSinh[Sqrt[3/2]* 
x], 2/3] + (725*I)*Sqrt[3]*Sqrt[1 + x^2]*Sqrt[2 + 3*x^2]*(2 + 5*x^2 + 3*x^ 
4)*EllipticF[I*ArcSinh[Sqrt[3/2]*x], 2/3])/(54*(2 + 5*x^2 + 3*x^4)^(3/2))
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.29, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {2206, 27, 2206, 27, 1503, 1413, 1456}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (2 x^2+1\right )^2 \left (x^4-7 x^2+4\right )}{\left (3 x^4+5 x^2+2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 2206

\(\displaystyle \frac {x \left (365 x^2+257\right )}{27 \left (3 x^4+5 x^2+2\right )^{3/2}}-\frac {1}{6} \int \frac {2 \left (-36 x^4-819 x^2+203\right )}{9 \left (3 x^4+5 x^2+2\right )^{3/2}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {x \left (365 x^2+257\right )}{27 \left (3 x^4+5 x^2+2\right )^{3/2}}-\frac {1}{27} \int \frac {-36 x^4-819 x^2+203}{\left (3 x^4+5 x^2+2\right )^{3/2}}dx\)

\(\Big \downarrow \) 2206

\(\displaystyle \frac {1}{27} \left (\frac {1}{2} \int \frac {3 \left (4171 x^2+3446\right )}{\sqrt {3 x^4+5 x^2+2}}dx-\frac {x \left (12513 x^2+10541\right )}{2 \sqrt {3 x^4+5 x^2+2}}\right )+\frac {x \left (365 x^2+257\right )}{27 \left (3 x^4+5 x^2+2\right )^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{27} \left (\frac {3}{2} \int \frac {4171 x^2+3446}{\sqrt {3 x^4+5 x^2+2}}dx-\frac {x \left (12513 x^2+10541\right )}{2 \sqrt {3 x^4+5 x^2+2}}\right )+\frac {x \left (365 x^2+257\right )}{27 \left (3 x^4+5 x^2+2\right )^{3/2}}\)

\(\Big \downarrow \) 1503

\(\displaystyle \frac {1}{27} \left (\frac {3}{2} \left (3446 \int \frac {1}{\sqrt {3 x^4+5 x^2+2}}dx+4171 \int \frac {x^2}{\sqrt {3 x^4+5 x^2+2}}dx\right )-\frac {x \left (12513 x^2+10541\right )}{2 \sqrt {3 x^4+5 x^2+2}}\right )+\frac {x \left (365 x^2+257\right )}{27 \left (3 x^4+5 x^2+2\right )^{3/2}}\)

\(\Big \downarrow \) 1413

\(\displaystyle \frac {1}{27} \left (\frac {3}{2} \left (4171 \int \frac {x^2}{\sqrt {3 x^4+5 x^2+2}}dx+\frac {1723 \sqrt {2} \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{\sqrt {3 x^4+5 x^2+2}}\right )-\frac {x \left (12513 x^2+10541\right )}{2 \sqrt {3 x^4+5 x^2+2}}\right )+\frac {x \left (365 x^2+257\right )}{27 \left (3 x^4+5 x^2+2\right )^{3/2}}\)

\(\Big \downarrow \) 1456

\(\displaystyle \frac {1}{27} \left (\frac {3}{2} \left (\frac {1723 \sqrt {2} \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),-\frac {1}{2}\right )}{\sqrt {3 x^4+5 x^2+2}}+4171 \left (\frac {x \left (3 x^2+2\right )}{3 \sqrt {3 x^4+5 x^2+2}}-\frac {\sqrt {2} \left (x^2+1\right ) \sqrt {\frac {3 x^2+2}{x^2+1}} E\left (\arctan (x)\left |-\frac {1}{2}\right .\right )}{3 \sqrt {3 x^4+5 x^2+2}}\right )\right )-\frac {x \left (12513 x^2+10541\right )}{2 \sqrt {3 x^4+5 x^2+2}}\right )+\frac {x \left (365 x^2+257\right )}{27 \left (3 x^4+5 x^2+2\right )^{3/2}}\)

Input:

Int[((1 + 2*x^2)^2*(4 - 7*x^2 + x^4))/(2 + 5*x^2 + 3*x^4)^(5/2),x]
 

Output:

(x*(257 + 365*x^2))/(27*(2 + 5*x^2 + 3*x^4)^(3/2)) + (-1/2*(x*(10541 + 125 
13*x^2))/Sqrt[2 + 5*x^2 + 3*x^4] + (3*(4171*((x*(2 + 3*x^2))/(3*Sqrt[2 + 5 
*x^2 + 3*x^4]) - (Sqrt[2]*(1 + x^2)*Sqrt[(2 + 3*x^2)/(1 + x^2)]*EllipticE[ 
ArcTan[x], -1/2])/(3*Sqrt[2 + 5*x^2 + 3*x^4])) + (1723*Sqrt[2]*(1 + x^2)*S 
qrt[(2 + 3*x^2)/(1 + x^2)]*EllipticF[ArcTan[x], -1/2])/Sqrt[2 + 5*x^2 + 3* 
x^4]))/2)/27
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1413
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b 
^2 - 4*a*c, 2]}, Simp[(2*a + (b - q)*x^2)*(Sqrt[(2*a + (b + q)*x^2)/(2*a + 
(b - q)*x^2)]/(2*a*Rt[(b - q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF 
[ArcTan[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; 
 FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1456
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[b^2 - 4*a*c, 2]}, Simp[x*((b - q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4 
])), x] - Simp[Rt[(b - q)/(2*a), 2]*(2*a + (b - q)*x^2)*(Sqrt[(2*a + (b + q 
)*x^2)/(2*a + (b - q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan 
[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; FreeQ[ 
{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1503
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[d   Int[1/Sqrt[a + b*x^2 + c*x^4] 
, x], x] + Simp[e   Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b + q) 
/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 2206
Int[(Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{d = 
 Coeff[PolynomialRemainder[Px, a + b*x^2 + c*x^4, x], x, 0], e = Coeff[Poly 
nomialRemainder[Px, a + b*x^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^ 
4)^(p + 1)*((a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)/(2*a*(p + 1)*(b 
^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(a + b*x^2 + c 
*x^4)^(p + 1)*ExpandToSum[2*a*(p + 1)*(b^2 - 4*a*c)*PolynomialQuotient[Px, 
a + b*x^2 + c*x^4, x] + b^2*d*(2*p + 3) - 2*a*c*d*(4*p + 5) - a*b*e + c*(4* 
p + 7)*(b*d - 2*a*e)*x^2, x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Px, x 
^2] && Expon[Px, x^2] > 1 && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1]
 
Maple [A] (verified)

Time = 11.14 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.84

method result size
risch \(-\frac {x \left (12513 x^{6}+31396 x^{4}+25667 x^{2}+6856\right )}{18 \left (3 x^{4}+5 x^{2}+2\right )^{\frac {3}{2}}}-\frac {1723 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )}{18 \sqrt {3 x^{4}+5 x^{2}+2}}+\frac {4171 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \left (\operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )-\operatorname {EllipticE}\left (i x , \frac {\sqrt {6}}{2}\right )\right )}{54 \sqrt {3 x^{4}+5 x^{2}+2}}\) \(135\)
elliptic \(\frac {\left (\frac {365}{243} x^{3}+\frac {257}{243} x \right ) \sqrt {3 x^{4}+5 x^{2}+2}}{\left (x^{4}+\frac {5}{3} x^{2}+\frac {2}{3}\right )^{2}}-\frac {6 \left (\frac {4171}{108} x^{3}+\frac {10541}{324} x \right )}{\sqrt {3 x^{4}+5 x^{2}+2}}-\frac {1723 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )}{18 \sqrt {3 x^{4}+5 x^{2}+2}}+\frac {4171 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \left (\operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )-\operatorname {EllipticE}\left (i x , \frac {\sqrt {6}}{2}\right )\right )}{54 \sqrt {3 x^{4}+5 x^{2}+2}}\) \(162\)
default \(\frac {4 \left (\frac {5}{18} x^{3}+\frac {13}{54} x \right ) \sqrt {3 x^{4}+5 x^{2}+2}}{\left (x^{4}+\frac {5}{3} x^{2}+\frac {2}{3}\right )^{2}}-\frac {24 \left (\frac {115}{12} x^{3}+\frac {145}{18} x \right )}{\sqrt {3 x^{4}+5 x^{2}+2}}-\frac {1723 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )}{18 \sqrt {3 x^{4}+5 x^{2}+2}}+\frac {4171 i \sqrt {x^{2}+1}\, \sqrt {6 x^{2}+4}\, \left (\operatorname {EllipticF}\left (i x , \frac {\sqrt {6}}{2}\right )-\operatorname {EllipticE}\left (i x , \frac {\sqrt {6}}{2}\right )\right )}{54 \sqrt {3 x^{4}+5 x^{2}+2}}+\frac {9 \left (-\frac {2}{9} x^{3}-\frac {5}{27} x \right ) \sqrt {3 x^{4}+5 x^{2}+2}}{\left (x^{4}+\frac {5}{3} x^{2}+\frac {2}{3}\right )^{2}}-\frac {54 \left (-\frac {97}{12} x^{3}-\frac {245}{36} x \right )}{\sqrt {3 x^{4}+5 x^{2}+2}}-\frac {11 \left (\frac {5}{27} x^{3}+\frac {4}{27} x \right ) \sqrt {3 x^{4}+5 x^{2}+2}}{\left (x^{4}+\frac {5}{3} x^{2}+\frac {2}{3}\right )^{2}}+\frac {440 x^{3}+\frac {1111}{3} x}{\sqrt {3 x^{4}+5 x^{2}+2}}-\frac {24 \left (-\frac {13}{81} x^{3}-\frac {10}{81} x \right ) \sqrt {3 x^{4}+5 x^{2}+2}}{\left (x^{4}+\frac {5}{3} x^{2}+\frac {2}{3}\right )^{2}}+\frac {-776 x^{3}-\frac {1960}{3} x}{\sqrt {3 x^{4}+5 x^{2}+2}}+\frac {4 \left (\frac {35}{243} x^{3}+\frac {26}{243} x \right ) \sqrt {3 x^{4}+5 x^{2}+2}}{\left (x^{4}+\frac {5}{3} x^{2}+\frac {2}{3}\right )^{2}}-\frac {24 \left (\frac {115}{27} x^{3}+\frac {583}{162} x \right )}{\sqrt {3 x^{4}+5 x^{2}+2}}\) \(411\)

Input:

int((2*x^2+1)^2*(x^4-7*x^2+4)/(3*x^4+5*x^2+2)^(5/2),x,method=_RETURNVERBOS 
E)
 

Output:

-1/18*x*(12513*x^6+31396*x^4+25667*x^2+6856)/(3*x^4+5*x^2+2)^(3/2)-1723/18 
*I*(x^2+1)^(1/2)*(6*x^2+4)^(1/2)/(3*x^4+5*x^2+2)^(1/2)*EllipticF(I*x,1/2*6 
^(1/2))+4171/54*I*(x^2+1)^(1/2)*(6*x^2+4)^(1/2)/(3*x^4+5*x^2+2)^(1/2)*(Ell 
ipticF(I*x,1/2*6^(1/2))-EllipticE(I*x,1/2*6^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.80 \[ \int \frac {\left (1+2 x^2\right )^2 \left (4-7 x^2+x^4\right )}{\left (2+5 x^2+3 x^4\right )^{5/2}} \, dx=-\frac {4171 \, \sqrt {2} {\left (-9 i \, x^{8} - 30 i \, x^{6} - 37 i \, x^{4} - 20 i \, x^{2} - 4 i\right )} E(\arcsin \left (i \, x\right )\,|\,\frac {3}{2}) + 9340 \, \sqrt {2} {\left (9 i \, x^{8} + 30 i \, x^{6} + 37 i \, x^{4} + 20 i \, x^{2} + 4 i\right )} F(\arcsin \left (i \, x\right )\,|\,\frac {3}{2}) + 3 \, {\left (12513 \, x^{7} + 31396 \, x^{5} + 25667 \, x^{3} + 6856 \, x\right )} \sqrt {3 \, x^{4} + 5 \, x^{2} + 2}}{54 \, {\left (9 \, x^{8} + 30 \, x^{6} + 37 \, x^{4} + 20 \, x^{2} + 4\right )}} \] Input:

integrate((2*x^2+1)^2*(x^4-7*x^2+4)/(3*x^4+5*x^2+2)^(5/2),x, algorithm="fr 
icas")
 

Output:

-1/54*(4171*sqrt(2)*(-9*I*x^8 - 30*I*x^6 - 37*I*x^4 - 20*I*x^2 - 4*I)*elli 
ptic_e(arcsin(I*x), 3/2) + 9340*sqrt(2)*(9*I*x^8 + 30*I*x^6 + 37*I*x^4 + 2 
0*I*x^2 + 4*I)*elliptic_f(arcsin(I*x), 3/2) + 3*(12513*x^7 + 31396*x^5 + 2 
5667*x^3 + 6856*x)*sqrt(3*x^4 + 5*x^2 + 2))/(9*x^8 + 30*x^6 + 37*x^4 + 20* 
x^2 + 4)
                                                                                    
                                                                                    
 

Sympy [F]

\[ \int \frac {\left (1+2 x^2\right )^2 \left (4-7 x^2+x^4\right )}{\left (2+5 x^2+3 x^4\right )^{5/2}} \, dx=\int \frac {\left (2 x^{2} + 1\right )^{2} \left (x^{4} - 7 x^{2} + 4\right )}{\left (\left (x^{2} + 1\right ) \left (3 x^{2} + 2\right )\right )^{\frac {5}{2}}}\, dx \] Input:

integrate((2*x**2+1)**2*(x**4-7*x**2+4)/(3*x**4+5*x**2+2)**(5/2),x)
 

Output:

Integral((2*x**2 + 1)**2*(x**4 - 7*x**2 + 4)/((x**2 + 1)*(3*x**2 + 2))**(5 
/2), x)
 

Maxima [F]

\[ \int \frac {\left (1+2 x^2\right )^2 \left (4-7 x^2+x^4\right )}{\left (2+5 x^2+3 x^4\right )^{5/2}} \, dx=\int { \frac {{\left (x^{4} - 7 \, x^{2} + 4\right )} {\left (2 \, x^{2} + 1\right )}^{2}}{{\left (3 \, x^{4} + 5 \, x^{2} + 2\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((2*x^2+1)^2*(x^4-7*x^2+4)/(3*x^4+5*x^2+2)^(5/2),x, algorithm="ma 
xima")
 

Output:

integrate((x^4 - 7*x^2 + 4)*(2*x^2 + 1)^2/(3*x^4 + 5*x^2 + 2)^(5/2), x)
 

Giac [F]

\[ \int \frac {\left (1+2 x^2\right )^2 \left (4-7 x^2+x^4\right )}{\left (2+5 x^2+3 x^4\right )^{5/2}} \, dx=\int { \frac {{\left (x^{4} - 7 \, x^{2} + 4\right )} {\left (2 \, x^{2} + 1\right )}^{2}}{{\left (3 \, x^{4} + 5 \, x^{2} + 2\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((2*x^2+1)^2*(x^4-7*x^2+4)/(3*x^4+5*x^2+2)^(5/2),x, algorithm="gi 
ac")
 

Output:

integrate((x^4 - 7*x^2 + 4)*(2*x^2 + 1)^2/(3*x^4 + 5*x^2 + 2)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (1+2 x^2\right )^2 \left (4-7 x^2+x^4\right )}{\left (2+5 x^2+3 x^4\right )^{5/2}} \, dx=\int \frac {{\left (2\,x^2+1\right )}^2\,\left (x^4-7\,x^2+4\right )}{{\left (3\,x^4+5\,x^2+2\right )}^{5/2}} \,d x \] Input:

int(((2*x^2 + 1)^2*(x^4 - 7*x^2 + 4))/(5*x^2 + 3*x^4 + 2)^(5/2),x)
 

Output:

int(((2*x^2 + 1)^2*(x^4 - 7*x^2 + 4))/(5*x^2 + 3*x^4 + 2)^(5/2), x)
 

Reduce [F]

\[ \int \frac {\left (1+2 x^2\right )^2 \left (4-7 x^2+x^4\right )}{\left (2+5 x^2+3 x^4\right )^{5/2}} \, dx=\frac {-360 \sqrt {3 x^{4}+5 x^{2}+2}\, x^{5}+320 \sqrt {3 x^{4}+5 x^{2}+2}\, x^{3}-51 \sqrt {3 x^{4}+5 x^{2}+2}\, x +10638 \left (\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}}{27 x^{12}+135 x^{10}+279 x^{8}+305 x^{6}+186 x^{4}+60 x^{2}+8}d x \right ) x^{8}+35460 \left (\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}}{27 x^{12}+135 x^{10}+279 x^{8}+305 x^{6}+186 x^{4}+60 x^{2}+8}d x \right ) x^{6}+43734 \left (\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}}{27 x^{12}+135 x^{10}+279 x^{8}+305 x^{6}+186 x^{4}+60 x^{2}+8}d x \right ) x^{4}+23640 \left (\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}}{27 x^{12}+135 x^{10}+279 x^{8}+305 x^{6}+186 x^{4}+60 x^{2}+8}d x \right ) x^{2}+4728 \left (\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}}{27 x^{12}+135 x^{10}+279 x^{8}+305 x^{6}+186 x^{4}+60 x^{2}+8}d x \right )-1215 \left (\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}\, x^{4}}{27 x^{12}+135 x^{10}+279 x^{8}+305 x^{6}+186 x^{4}+60 x^{2}+8}d x \right ) x^{8}-4050 \left (\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}\, x^{4}}{27 x^{12}+135 x^{10}+279 x^{8}+305 x^{6}+186 x^{4}+60 x^{2}+8}d x \right ) x^{6}-4995 \left (\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}\, x^{4}}{27 x^{12}+135 x^{10}+279 x^{8}+305 x^{6}+186 x^{4}+60 x^{2}+8}d x \right ) x^{4}-2700 \left (\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}\, x^{4}}{27 x^{12}+135 x^{10}+279 x^{8}+305 x^{6}+186 x^{4}+60 x^{2}+8}d x \right ) x^{2}-540 \left (\int \frac {\sqrt {3 x^{4}+5 x^{2}+2}\, x^{4}}{27 x^{12}+135 x^{10}+279 x^{8}+305 x^{6}+186 x^{4}+60 x^{2}+8}d x \right )}{2430 x^{8}+8100 x^{6}+9990 x^{4}+5400 x^{2}+1080} \] Input:

int((2*x^2+1)^2*(x^4-7*x^2+4)/(3*x^4+5*x^2+2)^(5/2),x)
 

Output:

( - 360*sqrt(3*x**4 + 5*x**2 + 2)*x**5 + 320*sqrt(3*x**4 + 5*x**2 + 2)*x** 
3 - 51*sqrt(3*x**4 + 5*x**2 + 2)*x + 10638*int(sqrt(3*x**4 + 5*x**2 + 2)/( 
27*x**12 + 135*x**10 + 279*x**8 + 305*x**6 + 186*x**4 + 60*x**2 + 8),x)*x* 
*8 + 35460*int(sqrt(3*x**4 + 5*x**2 + 2)/(27*x**12 + 135*x**10 + 279*x**8 
+ 305*x**6 + 186*x**4 + 60*x**2 + 8),x)*x**6 + 43734*int(sqrt(3*x**4 + 5*x 
**2 + 2)/(27*x**12 + 135*x**10 + 279*x**8 + 305*x**6 + 186*x**4 + 60*x**2 
+ 8),x)*x**4 + 23640*int(sqrt(3*x**4 + 5*x**2 + 2)/(27*x**12 + 135*x**10 + 
 279*x**8 + 305*x**6 + 186*x**4 + 60*x**2 + 8),x)*x**2 + 4728*int(sqrt(3*x 
**4 + 5*x**2 + 2)/(27*x**12 + 135*x**10 + 279*x**8 + 305*x**6 + 186*x**4 + 
 60*x**2 + 8),x) - 1215*int((sqrt(3*x**4 + 5*x**2 + 2)*x**4)/(27*x**12 + 1 
35*x**10 + 279*x**8 + 305*x**6 + 186*x**4 + 60*x**2 + 8),x)*x**8 - 4050*in 
t((sqrt(3*x**4 + 5*x**2 + 2)*x**4)/(27*x**12 + 135*x**10 + 279*x**8 + 305* 
x**6 + 186*x**4 + 60*x**2 + 8),x)*x**6 - 4995*int((sqrt(3*x**4 + 5*x**2 + 
2)*x**4)/(27*x**12 + 135*x**10 + 279*x**8 + 305*x**6 + 186*x**4 + 60*x**2 
+ 8),x)*x**4 - 2700*int((sqrt(3*x**4 + 5*x**2 + 2)*x**4)/(27*x**12 + 135*x 
**10 + 279*x**8 + 305*x**6 + 186*x**4 + 60*x**2 + 8),x)*x**2 - 540*int((sq 
rt(3*x**4 + 5*x**2 + 2)*x**4)/(27*x**12 + 135*x**10 + 279*x**8 + 305*x**6 
+ 186*x**4 + 60*x**2 + 8),x))/(270*(9*x**8 + 30*x**6 + 37*x**4 + 20*x**2 + 
 4))