\(\int \frac {(A+B x^2) (d+e x^2)}{\sqrt {a+c x^4}} \, dx\) [69]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 275 \[ \int \frac {\left (A+B x^2\right ) \left (d+e x^2\right )}{\sqrt {a+c x^4}} \, dx=\frac {B e x \sqrt {a+c x^4}}{3 c}+\frac {(B d+A e) x \sqrt {a+c x^4}}{\sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {\sqrt [4]{a} (B d+A e) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{c^{3/4} \sqrt {a+c x^4}}+\frac {\left (3 A c d-a B e+3 \sqrt {a} \sqrt {c} (B d+A e)\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{6 \sqrt [4]{a} c^{5/4} \sqrt {a+c x^4}} \] Output:

1/3*B*e*x*(c*x^4+a)^(1/2)/c+(A*e+B*d)*x*(c*x^4+a)^(1/2)/c^(1/2)/(a^(1/2)+c 
^(1/2)*x^2)-a^(1/4)*(A*e+B*d)*(a^(1/2)+c^(1/2)*x^2)*((c*x^4+a)/(a^(1/2)+c^ 
(1/2)*x^2)^2)^(1/2)*EllipticE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*2^(1/2) 
)/c^(3/4)/(c*x^4+a)^(1/2)+1/6*(3*A*c*d-B*a*e+3*a^(1/2)*c^(1/2)*(A*e+B*d))* 
(a^(1/2)+c^(1/2)*x^2)*((c*x^4+a)/(a^(1/2)+c^(1/2)*x^2)^2)^(1/2)*InverseJac 
obiAM(2*arctan(c^(1/4)*x/a^(1/4)),1/2*2^(1/2))/a^(1/4)/c^(5/4)/(c*x^4+a)^( 
1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.12 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.44 \[ \int \frac {\left (A+B x^2\right ) \left (d+e x^2\right )}{\sqrt {a+c x^4}} \, dx=\frac {B e x \left (a+c x^4\right )+(3 A c d-a B e) x \sqrt {1+\frac {c x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {c x^4}{a}\right )+c (B d+A e) x^3 \sqrt {1+\frac {c x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-\frac {c x^4}{a}\right )}{3 c \sqrt {a+c x^4}} \] Input:

Integrate[((A + B*x^2)*(d + e*x^2))/Sqrt[a + c*x^4],x]
 

Output:

(B*e*x*(a + c*x^4) + (3*A*c*d - a*B*e)*x*Sqrt[1 + (c*x^4)/a]*Hypergeometri 
c2F1[1/4, 1/2, 5/4, -((c*x^4)/a)] + c*(B*d + A*e)*x^3*Sqrt[1 + (c*x^4)/a]* 
Hypergeometric2F1[1/2, 3/4, 7/4, -((c*x^4)/a)])/(3*c*Sqrt[a + c*x^4])
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 432, normalized size of antiderivative = 1.57, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {2259, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (A+B x^2\right ) \left (d+e x^2\right )}{\sqrt {a+c x^4}} \, dx\)

\(\Big \downarrow \) 2259

\(\displaystyle \int \left (\frac {x^2 (A e+B d)}{\sqrt {a+c x^4}}+\frac {A d}{\sqrt {a+c x^4}}+\frac {B e x^4}{\sqrt {a+c x^4}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {a^{3/4} B e \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{6 c^{5/4} \sqrt {a+c x^4}}+\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} (A e+B d) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 c^{3/4} \sqrt {a+c x^4}}-\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} (A e+B d) E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{c^{3/4} \sqrt {a+c x^4}}+\frac {A d \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+c x^4}}+\frac {x \sqrt {a+c x^4} (A e+B d)}{\sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {B e x \sqrt {a+c x^4}}{3 c}\)

Input:

Int[((A + B*x^2)*(d + e*x^2))/Sqrt[a + c*x^4],x]
 

Output:

(B*e*x*Sqrt[a + c*x^4])/(3*c) + ((B*d + A*e)*x*Sqrt[a + c*x^4])/(Sqrt[c]*( 
Sqrt[a] + Sqrt[c]*x^2)) - (a^(1/4)*(B*d + A*e)*(Sqrt[a] + Sqrt[c]*x^2)*Sqr 
t[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^ 
(1/4)], 1/2])/(c^(3/4)*Sqrt[a + c*x^4]) + (A*d*(Sqrt[a] + Sqrt[c]*x^2)*Sqr 
t[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^ 
(1/4)], 1/2])/(2*a^(1/4)*c^(1/4)*Sqrt[a + c*x^4]) - (a^(3/4)*B*e*(Sqrt[a] 
+ Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*Arc 
Tan[(c^(1/4)*x)/a^(1/4)], 1/2])/(6*c^(5/4)*Sqrt[a + c*x^4]) + (a^(1/4)*(B* 
d + A*e)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^ 
2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(2*c^(3/4)*Sqrt[a + c*x^ 
4])
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2259
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] 
 :> Int[ExpandIntegrand[1/Sqrt[a + c*x^4], Px*(d + e*x^2)^q*(a + c*x^4)^(p 
+ 1/2), x], x] /; FreeQ[{a, c, d, e}, x] && PolyQ[Px, x] && IntegerQ[p + 1/ 
2] && IntegerQ[q]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.80 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.74

method result size
elliptic \(\frac {B e x \sqrt {c \,x^{4}+a}}{3 c}+\frac {\left (A d -\frac {a B e}{3 c}\right ) \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {i \left (A e +B d \right ) \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}\) \(203\)
default \(\frac {A d \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {i \left (A e +B d \right ) \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}+B e \left (\frac {x \sqrt {c \,x^{4}+a}}{3 c}-\frac {a \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{3 c \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\right )\) \(269\)
risch \(\frac {B e x \sqrt {c \,x^{4}+a}}{3 c}+\frac {\frac {3 i \left (A e +B d \right ) \sqrt {c}\, \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {3 A c d \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}-\frac {B a e \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}}{3 c}\) \(274\)

Input:

int((B*x^2+A)*(e*x^2+d)/(c*x^4+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/3*B*e*x*(c*x^4+a)^(1/2)/c+(A*d-1/3*a*B*e/c)/(I*c^(1/2)/a^(1/2))^(1/2)*(1 
-I*c^(1/2)*x^2/a^(1/2))^(1/2)*(1+I*c^(1/2)*x^2/a^(1/2))^(1/2)/(c*x^4+a)^(1 
/2)*EllipticF(x*(I*c^(1/2)/a^(1/2))^(1/2),I)+I*(A*e+B*d)*a^(1/2)/(I*c^(1/2 
)/a^(1/2))^(1/2)*(1-I*c^(1/2)*x^2/a^(1/2))^(1/2)*(1+I*c^(1/2)*x^2/a^(1/2)) 
^(1/2)/(c*x^4+a)^(1/2)/c^(1/2)*(EllipticF(x*(I*c^(1/2)/a^(1/2))^(1/2),I)-E 
llipticE(x*(I*c^(1/2)/a^(1/2))^(1/2),I))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.46 \[ \int \frac {\left (A+B x^2\right ) \left (d+e x^2\right )}{\sqrt {a+c x^4}} \, dx=\frac {3 \, {\left (B a d + A a e\right )} \sqrt {c} x \left (-\frac {a}{c}\right )^{\frac {3}{4}} E(\arcsin \left (\frac {\left (-\frac {a}{c}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) - {\left ({\left (3 \, A + B\right )} a e + 3 \, {\left (B a - A c\right )} d\right )} \sqrt {c} x \left (-\frac {a}{c}\right )^{\frac {3}{4}} F(\arcsin \left (\frac {\left (-\frac {a}{c}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + {\left (B a e x^{2} + 3 \, B a d + 3 \, A a e\right )} \sqrt {c x^{4} + a}}{3 \, a c x} \] Input:

integrate((B*x^2+A)*(e*x^2+d)/(c*x^4+a)^(1/2),x, algorithm="fricas")
 

Output:

1/3*(3*(B*a*d + A*a*e)*sqrt(c)*x*(-a/c)^(3/4)*elliptic_e(arcsin((-a/c)^(1/ 
4)/x), -1) - ((3*A + B)*a*e + 3*(B*a - A*c)*d)*sqrt(c)*x*(-a/c)^(3/4)*elli 
ptic_f(arcsin((-a/c)^(1/4)/x), -1) + (B*a*e*x^2 + 3*B*a*d + 3*A*a*e)*sqrt( 
c*x^4 + a))/(a*c*x)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 2.47 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.61 \[ \int \frac {\left (A+B x^2\right ) \left (d+e x^2\right )}{\sqrt {a+c x^4}} \, dx=\frac {A d x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {5}{4}\right )} + \frac {A e x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {7}{4}\right )} + \frac {B d x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {7}{4}\right )} + \frac {B e x^{5} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {5}{4} \\ \frac {9}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {9}{4}\right )} \] Input:

integrate((B*x**2+A)*(e*x**2+d)/(c*x**4+a)**(1/2),x)
 

Output:

A*d*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*sq 
rt(a)*gamma(5/4)) + A*e*x**3*gamma(3/4)*hyper((1/2, 3/4), (7/4,), c*x**4*e 
xp_polar(I*pi)/a)/(4*sqrt(a)*gamma(7/4)) + B*d*x**3*gamma(3/4)*hyper((1/2, 
 3/4), (7/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(7/4)) + B*e*x**5 
*gamma(5/4)*hyper((1/2, 5/4), (9/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a) 
*gamma(9/4))
 

Maxima [F]

\[ \int \frac {\left (A+B x^2\right ) \left (d+e x^2\right )}{\sqrt {a+c x^4}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} {\left (e x^{2} + d\right )}}{\sqrt {c x^{4} + a}} \,d x } \] Input:

integrate((B*x^2+A)*(e*x^2+d)/(c*x^4+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate((B*x^2 + A)*(e*x^2 + d)/sqrt(c*x^4 + a), x)
 

Giac [F]

\[ \int \frac {\left (A+B x^2\right ) \left (d+e x^2\right )}{\sqrt {a+c x^4}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} {\left (e x^{2} + d\right )}}{\sqrt {c x^{4} + a}} \,d x } \] Input:

integrate((B*x^2+A)*(e*x^2+d)/(c*x^4+a)^(1/2),x, algorithm="giac")
 

Output:

integrate((B*x^2 + A)*(e*x^2 + d)/sqrt(c*x^4 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+B x^2\right ) \left (d+e x^2\right )}{\sqrt {a+c x^4}} \, dx=\int \frac {\left (B\,x^2+A\right )\,\left (e\,x^2+d\right )}{\sqrt {c\,x^4+a}} \,d x \] Input:

int(((A + B*x^2)*(d + e*x^2))/(a + c*x^4)^(1/2),x)
 

Output:

int(((A + B*x^2)*(d + e*x^2))/(a + c*x^4)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\left (A+B x^2\right ) \left (d+e x^2\right )}{\sqrt {a+c x^4}} \, dx=\frac {\sqrt {c \,x^{4}+a}\, b e x -\left (\int \frac {\sqrt {c \,x^{4}+a}}{c \,x^{4}+a}d x \right ) a b e +3 \left (\int \frac {\sqrt {c \,x^{4}+a}}{c \,x^{4}+a}d x \right ) a c d +3 \left (\int \frac {\sqrt {c \,x^{4}+a}\, x^{2}}{c \,x^{4}+a}d x \right ) a c e +3 \left (\int \frac {\sqrt {c \,x^{4}+a}\, x^{2}}{c \,x^{4}+a}d x \right ) b c d}{3 c} \] Input:

int((B*x^2+A)*(e*x^2+d)/(c*x^4+a)^(1/2),x)
 

Output:

(sqrt(a + c*x**4)*b*e*x - int(sqrt(a + c*x**4)/(a + c*x**4),x)*a*b*e + 3*i 
nt(sqrt(a + c*x**4)/(a + c*x**4),x)*a*c*d + 3*int((sqrt(a + c*x**4)*x**2)/ 
(a + c*x**4),x)*a*c*e + 3*int((sqrt(a + c*x**4)*x**2)/(a + c*x**4),x)*b*c* 
d)/(3*c)