\(\int \frac {x^2 (A+B x^2)}{(c+d x^2) (a-c x^4)^{3/2}} \, dx\) [17]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 311 \[ \int \frac {x^2 \left (A+B x^2\right )}{\left (c+d x^2\right ) \left (a-c x^4\right )^{3/2}} \, dx=\frac {x \left (a (B c-A d)+\left (A c^2-a B d\right ) x^2\right )}{2 a \left (c^3-a d^2\right ) \sqrt {a-c x^4}}-\frac {\left (A c^2-a B d\right ) \sqrt {1-\frac {c x^4}{a}} E\left (\left .\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{2 \sqrt [4]{a} c^{3/4} \left (c^3-a d^2\right ) \sqrt {a-c x^4}}+\frac {\left (\sqrt {a} B+A \sqrt {c}\right ) \sqrt {1-\frac {c x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt [4]{a} c^{3/4} \left (c^{3/2}+\sqrt {a} d\right ) \sqrt {a-c x^4}}-\frac {\sqrt [4]{a} (B c-A d) \sqrt {1-\frac {c x^4}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} d}{c^{3/2}},\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt [4]{c} \left (c^3-a d^2\right ) \sqrt {a-c x^4}} \] Output:

1/2*x*(a*(-A*d+B*c)+(A*c^2-B*a*d)*x^2)/a/(-a*d^2+c^3)/(-c*x^4+a)^(1/2)-1/2 
*(A*c^2-B*a*d)*(1-c*x^4/a)^(1/2)*EllipticE(c^(1/4)*x/a^(1/4),I)/a^(1/4)/c^ 
(3/4)/(-a*d^2+c^3)/(-c*x^4+a)^(1/2)+1/2*(a^(1/2)*B+A*c^(1/2))*(1-c*x^4/a)^ 
(1/2)*EllipticF(c^(1/4)*x/a^(1/4),I)/a^(1/4)/c^(3/4)/(c^(3/2)+a^(1/2)*d)/( 
-c*x^4+a)^(1/2)-a^(1/4)*(-A*d+B*c)*(1-c*x^4/a)^(1/2)*EllipticPi(c^(1/4)*x/ 
a^(1/4),-a^(1/2)*d/c^(3/2),I)/c^(1/4)/(-a*d^2+c^3)/(-c*x^4+a)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 11.52 (sec) , antiderivative size = 307, normalized size of antiderivative = 0.99 \[ \int \frac {x^2 \left (A+B x^2\right )}{\left (c+d x^2\right ) \left (a-c x^4\right )^{3/2}} \, dx=-\frac {i \sqrt {a} \left (-A c^2+a B d\right ) \sqrt {1-\frac {c x^4}{a}} E\left (\left .i \text {arcsinh}\left (\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}} x\right )\right |-1\right )-i \sqrt {a} \left (\sqrt {a} B+A \sqrt {c}\right ) \left (-c^{3/2}+\sqrt {a} d\right ) \sqrt {1-\frac {c x^4}{a}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}} x\right ),-1\right )+\sqrt {c} \left (\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}} x \left (-A c^2 x^2+a \left (-B c+A d+B d x^2\right )\right )-2 i a (B c-A d) \sqrt {1-\frac {c x^4}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} d}{c^{3/2}},i \text {arcsinh}\left (\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}} x\right ),-1\right )\right )}{2 a^{3/2} \left (-\frac {\sqrt {c}}{\sqrt {a}}\right )^{3/2} \left (-c^3+a d^2\right ) \sqrt {a-c x^4}} \] Input:

Integrate[(x^2*(A + B*x^2))/((c + d*x^2)*(a - c*x^4)^(3/2)),x]
 

Output:

-1/2*(I*Sqrt[a]*(-(A*c^2) + a*B*d)*Sqrt[1 - (c*x^4)/a]*EllipticE[I*ArcSinh 
[Sqrt[-(Sqrt[c]/Sqrt[a])]*x], -1] - I*Sqrt[a]*(Sqrt[a]*B + A*Sqrt[c])*(-c^ 
(3/2) + Sqrt[a]*d)*Sqrt[1 - (c*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[-(Sqrt[c]/ 
Sqrt[a])]*x], -1] + Sqrt[c]*(Sqrt[-(Sqrt[c]/Sqrt[a])]*x*(-(A*c^2*x^2) + a* 
(-(B*c) + A*d + B*d*x^2)) - (2*I)*a*(B*c - A*d)*Sqrt[1 - (c*x^4)/a]*Ellipt 
icPi[-((Sqrt[a]*d)/c^(3/2)), I*ArcSinh[Sqrt[-(Sqrt[c]/Sqrt[a])]*x], -1]))/ 
(a^(3/2)*(-(Sqrt[c]/Sqrt[a]))^(3/2)*(-c^3 + a*d^2)*Sqrt[a - c*x^4])
 

Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 311, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {2249, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \left (A+B x^2\right )}{\left (a-c x^4\right )^{3/2} \left (c+d x^2\right )} \, dx\)

\(\Big \downarrow \) 2249

\(\displaystyle \int \left (\frac {x^2 \left (A c^2-a B d\right )+a (B c-A d)}{\left (c^3-a d^2\right ) \left (a-c x^4\right )^{3/2}}-\frac {c (B c-A d)}{\left (c^3-a d^2\right ) \sqrt {a-c x^4} \left (c+d x^2\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {1-\frac {c x^4}{a}} \left (\sqrt {a} B+A \sqrt {c}\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt [4]{a} c^{3/4} \left (\sqrt {a} d+c^{3/2}\right ) \sqrt {a-c x^4}}-\frac {\sqrt [4]{a} \sqrt {1-\frac {c x^4}{a}} (B c-A d) \operatorname {EllipticPi}\left (-\frac {\sqrt {a} d}{c^{3/2}},\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt [4]{c} \left (c^3-a d^2\right ) \sqrt {a-c x^4}}-\frac {\sqrt {1-\frac {c x^4}{a}} \left (A c^2-a B d\right ) E\left (\left .\arcsin \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{2 \sqrt [4]{a} c^{3/4} \left (c^3-a d^2\right ) \sqrt {a-c x^4}}+\frac {x \left (x^2 \left (A c^2-a B d\right )+a (B c-A d)\right )}{2 a \left (c^3-a d^2\right ) \sqrt {a-c x^4}}\)

Input:

Int[(x^2*(A + B*x^2))/((c + d*x^2)*(a - c*x^4)^(3/2)),x]
 

Output:

(x*(a*(B*c - A*d) + (A*c^2 - a*B*d)*x^2))/(2*a*(c^3 - a*d^2)*Sqrt[a - c*x^ 
4]) - ((A*c^2 - a*B*d)*Sqrt[1 - (c*x^4)/a]*EllipticE[ArcSin[(c^(1/4)*x)/a^ 
(1/4)], -1])/(2*a^(1/4)*c^(3/4)*(c^3 - a*d^2)*Sqrt[a - c*x^4]) + ((Sqrt[a] 
*B + A*Sqrt[c])*Sqrt[1 - (c*x^4)/a]*EllipticF[ArcSin[(c^(1/4)*x)/a^(1/4)], 
 -1])/(2*a^(1/4)*c^(3/4)*(c^(3/2) + Sqrt[a]*d)*Sqrt[a - c*x^4]) - (a^(1/4) 
*(B*c - A*d)*Sqrt[1 - (c*x^4)/a]*EllipticPi[-((Sqrt[a]*d)/c^(3/2)), ArcSin 
[(c^(1/4)*x)/a^(1/4)], -1])/(c^(1/4)*(c^3 - a*d^2)*Sqrt[a - c*x^4])
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2249
Int[(Px_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_) 
^4)^(p_), x_Symbol] :> Int[ExpandIntegrand[1/Sqrt[a + c*x^4], Px*(f*x)^m*(d 
 + e*x^2)^q*(a + c*x^4)^(p + 1/2), x], x] /; FreeQ[{a, c, d, e, f, m}, x] & 
& PolyQ[Px, x] && IntegerQ[p + 1/2] && IntegerQ[q]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 741 vs. \(2 (255 ) = 510\).

Time = 1.16 (sec) , antiderivative size = 742, normalized size of antiderivative = 2.39

method result size
default \(\frac {A d \left (\frac {x}{2 a \sqrt {-\left (x^{4}-\frac {a}{c}\right ) c}}+\frac {\sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right )}{2 a \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}\right )+B d \left (\frac {x^{3}}{2 a \sqrt {-\left (x^{4}-\frac {a}{c}\right ) c}}+\frac {\sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right )\right )}{2 \sqrt {a}\, \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}\, \sqrt {c}}\right )-B c \left (\frac {x}{2 a \sqrt {-\left (x^{4}-\frac {a}{c}\right ) c}}+\frac {\sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right )}{2 a \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}\right )}{d^{2}}-\frac {c \left (A d -B c \right ) \left (\frac {2 c \left (\frac {d \,x^{3}}{4 a \left (a \,d^{2}-c^{3}\right )}-\frac {c x}{4 a \left (a \,d^{2}-c^{3}\right )}\right )}{\sqrt {-\left (x^{4}-\frac {a}{c}\right ) c}}-\frac {c^{2} \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right )}{2 a \left (a \,d^{2}-c^{3}\right ) \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}+\frac {\sqrt {c}\, d \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right )}{2 \sqrt {a}\, \left (a \,d^{2}-c^{3}\right ) \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}-\frac {\sqrt {c}\, d \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticE}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right )}{2 \sqrt {a}\, \left (a \,d^{2}-c^{3}\right ) \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}+\frac {d^{2} \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, -\frac {\sqrt {a}\, d}{c^{\frac {3}{2}}}, \frac {\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}}{\sqrt {\frac {\sqrt {c}}{\sqrt {a}}}}\right )}{\left (a \,d^{2}-c^{3}\right ) c \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}\right )}{d^{2}}\) \(742\)
elliptic \(\frac {2 c \left (-\frac {\left (A \,c^{2}-B a d \right ) x^{3}}{4 a c \left (a \,d^{2}-c^{3}\right )}+\frac {\left (A d -B c \right ) x}{4 c \left (a \,d^{2}-c^{3}\right )}\right )}{\sqrt {-\left (x^{4}-\frac {a}{c}\right ) c}}+\frac {\sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right ) A d}{2 \left (a \,d^{2}-c^{3}\right ) \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}-\frac {\sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right ) B c}{2 \left (a \,d^{2}-c^{3}\right ) \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}-\frac {\sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, c^{\frac {3}{2}} \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right ) A}{2 \sqrt {a}\, \left (a \,d^{2}-c^{3}\right ) \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}+\frac {\sqrt {a}\, \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right ) B d}{2 \left (a \,d^{2}-c^{3}\right ) \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}\, \sqrt {c}}+\frac {\sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, c^{\frac {3}{2}} \operatorname {EllipticE}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right ) A}{2 \sqrt {a}\, \left (a \,d^{2}-c^{3}\right ) \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}-\frac {\sqrt {a}\, \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticE}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, i\right ) B d}{2 \left (a \,d^{2}-c^{3}\right ) \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}\, \sqrt {c}}-\frac {d \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, -\frac {\sqrt {a}\, d}{c^{\frac {3}{2}}}, \frac {\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}}{\sqrt {\frac {\sqrt {c}}{\sqrt {a}}}}\right ) A}{\left (a \,d^{2}-c^{3}\right ) \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}+\frac {c \sqrt {1-\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {c}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}, -\frac {\sqrt {a}\, d}{c^{\frac {3}{2}}}, \frac {\sqrt {-\frac {\sqrt {c}}{\sqrt {a}}}}{\sqrt {\frac {\sqrt {c}}{\sqrt {a}}}}\right ) B}{\left (a \,d^{2}-c^{3}\right ) \sqrt {\frac {\sqrt {c}}{\sqrt {a}}}\, \sqrt {-c \,x^{4}+a}}\) \(790\)

Input:

int(x^2*(B*x^2+A)/(d*x^2+c)/(-c*x^4+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/d^2*(A*d*(1/2/a*x/(-(x^4-a/c)*c)^(1/2)+1/2/a/(c^(1/2)/a^(1/2))^(1/2)*(1- 
c^(1/2)*x^2/a^(1/2))^(1/2)*(1+c^(1/2)*x^2/a^(1/2))^(1/2)/(-c*x^4+a)^(1/2)* 
EllipticF(x*(c^(1/2)/a^(1/2))^(1/2),I))+B*d*(1/2/a*x^3/(-(x^4-a/c)*c)^(1/2 
)+1/2/a^(1/2)/(c^(1/2)/a^(1/2))^(1/2)*(1-c^(1/2)*x^2/a^(1/2))^(1/2)*(1+c^( 
1/2)*x^2/a^(1/2))^(1/2)/(-c*x^4+a)^(1/2)/c^(1/2)*(EllipticF(x*(c^(1/2)/a^( 
1/2))^(1/2),I)-EllipticE(x*(c^(1/2)/a^(1/2))^(1/2),I)))-B*c*(1/2/a*x/(-(x^ 
4-a/c)*c)^(1/2)+1/2/a/(c^(1/2)/a^(1/2))^(1/2)*(1-c^(1/2)*x^2/a^(1/2))^(1/2 
)*(1+c^(1/2)*x^2/a^(1/2))^(1/2)/(-c*x^4+a)^(1/2)*EllipticF(x*(c^(1/2)/a^(1 
/2))^(1/2),I)))-c/d^2*(A*d-B*c)*(2*c*(1/4/a*d/(a*d^2-c^3)*x^3-1/4*c/a/(a*d 
^2-c^3)*x)/(-(x^4-a/c)*c)^(1/2)-1/2*c^2/a/(a*d^2-c^3)/(c^(1/2)/a^(1/2))^(1 
/2)*(1-c^(1/2)*x^2/a^(1/2))^(1/2)*(1+c^(1/2)*x^2/a^(1/2))^(1/2)/(-c*x^4+a) 
^(1/2)*EllipticF(x*(c^(1/2)/a^(1/2))^(1/2),I)+1/2*c^(1/2)/a^(1/2)*d/(a*d^2 
-c^3)/(c^(1/2)/a^(1/2))^(1/2)*(1-c^(1/2)*x^2/a^(1/2))^(1/2)*(1+c^(1/2)*x^2 
/a^(1/2))^(1/2)/(-c*x^4+a)^(1/2)*EllipticF(x*(c^(1/2)/a^(1/2))^(1/2),I)-1/ 
2*c^(1/2)/a^(1/2)*d/(a*d^2-c^3)/(c^(1/2)/a^(1/2))^(1/2)*(1-c^(1/2)*x^2/a^( 
1/2))^(1/2)*(1+c^(1/2)*x^2/a^(1/2))^(1/2)/(-c*x^4+a)^(1/2)*EllipticE(x*(c^ 
(1/2)/a^(1/2))^(1/2),I)+1/(a*d^2-c^3)*d^2/c/(c^(1/2)/a^(1/2))^(1/2)*(1-c^( 
1/2)*x^2/a^(1/2))^(1/2)*(1+c^(1/2)*x^2/a^(1/2))^(1/2)/(-c*x^4+a)^(1/2)*Ell 
ipticPi(x*(c^(1/2)/a^(1/2))^(1/2),-a^(1/2)*d/c^(3/2),(-c^(1/2)/a^(1/2))^(1 
/2)/(c^(1/2)/a^(1/2))^(1/2)))
 

Fricas [F]

\[ \int \frac {x^2 \left (A+B x^2\right )}{\left (c+d x^2\right ) \left (a-c x^4\right )^{3/2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} x^{2}}{{\left (-c x^{4} + a\right )}^{\frac {3}{2}} {\left (d x^{2} + c\right )}} \,d x } \] Input:

integrate(x^2*(B*x^2+A)/(d*x^2+c)/(-c*x^4+a)^(3/2),x, algorithm="fricas")
 

Output:

integral((B*x^4 + A*x^2)*sqrt(-c*x^4 + a)/(c^2*d*x^10 + c^3*x^8 - 2*a*c*d* 
x^6 - 2*a*c^2*x^4 + a^2*d*x^2 + a^2*c), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^2 \left (A+B x^2\right )}{\left (c+d x^2\right ) \left (a-c x^4\right )^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(x**2*(B*x**2+A)/(d*x**2+c)/(-c*x**4+a)**(3/2),x)
                                                                                    
                                                                                    
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^2 \left (A+B x^2\right )}{\left (c+d x^2\right ) \left (a-c x^4\right )^{3/2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} x^{2}}{{\left (-c x^{4} + a\right )}^{\frac {3}{2}} {\left (d x^{2} + c\right )}} \,d x } \] Input:

integrate(x^2*(B*x^2+A)/(d*x^2+c)/(-c*x^4+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate((B*x^2 + A)*x^2/((-c*x^4 + a)^(3/2)*(d*x^2 + c)), x)
 

Giac [F]

\[ \int \frac {x^2 \left (A+B x^2\right )}{\left (c+d x^2\right ) \left (a-c x^4\right )^{3/2}} \, dx=\int { \frac {{\left (B x^{2} + A\right )} x^{2}}{{\left (-c x^{4} + a\right )}^{\frac {3}{2}} {\left (d x^{2} + c\right )}} \,d x } \] Input:

integrate(x^2*(B*x^2+A)/(d*x^2+c)/(-c*x^4+a)^(3/2),x, algorithm="giac")
 

Output:

integrate((B*x^2 + A)*x^2/((-c*x^4 + a)^(3/2)*(d*x^2 + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \left (A+B x^2\right )}{\left (c+d x^2\right ) \left (a-c x^4\right )^{3/2}} \, dx=\int \frac {x^2\,\left (B\,x^2+A\right )}{{\left (a-c\,x^4\right )}^{3/2}\,\left (d\,x^2+c\right )} \,d x \] Input:

int((x^2*(A + B*x^2))/((a - c*x^4)^(3/2)*(c + d*x^2)),x)
 

Output:

int((x^2*(A + B*x^2))/((a - c*x^4)^(3/2)*(c + d*x^2)), x)
 

Reduce [F]

\[ \int \frac {x^2 \left (A+B x^2\right )}{\left (c+d x^2\right ) \left (a-c x^4\right )^{3/2}} \, dx=\left (\int \frac {\sqrt {-c \,x^{4}+a}\, x^{4}}{c^{2} d \,x^{10}+c^{3} x^{8}-2 a c d \,x^{6}-2 a \,c^{2} x^{4}+a^{2} d \,x^{2}+a^{2} c}d x \right ) b +\left (\int \frac {\sqrt {-c \,x^{4}+a}\, x^{2}}{c^{2} d \,x^{10}+c^{3} x^{8}-2 a c d \,x^{6}-2 a \,c^{2} x^{4}+a^{2} d \,x^{2}+a^{2} c}d x \right ) a \] Input:

int(x^2*(B*x^2+A)/(d*x^2+c)/(-c*x^4+a)^(3/2),x)
 

Output:

int((sqrt(a - c*x**4)*x**4)/(a**2*c + a**2*d*x**2 - 2*a*c**2*x**4 - 2*a*c* 
d*x**6 + c**3*x**8 + c**2*d*x**10),x)*b + int((sqrt(a - c*x**4)*x**2)/(a** 
2*c + a**2*d*x**2 - 2*a*c**2*x**4 - 2*a*c*d*x**6 + c**3*x**8 + c**2*d*x**1 
0),x)*a