\(\int \frac {1}{x^2 (1-x^3+x^6)} \, dx\) [163]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 416 \[ \int \frac {1}{x^2 \left (1-x^3+x^6\right )} \, dx=-\frac {1}{x}+\frac {\left (i-\sqrt {3}\right ) \arctan \left (\frac {1+\frac {2 x}{\sqrt [3]{\frac {1}{2} \left (1-i \sqrt {3}\right )}}}{\sqrt {3}}\right )}{3\ 2^{2/3} \sqrt [3]{1-i \sqrt {3}}}-\frac {\left (i+\sqrt {3}\right ) \arctan \left (\frac {1+\frac {2 x}{\sqrt [3]{\frac {1}{2} \left (1+i \sqrt {3}\right )}}}{\sqrt {3}}\right )}{3\ 2^{2/3} \sqrt [3]{1+i \sqrt {3}}}-\frac {\left (3-i \sqrt {3}\right ) \log \left (\sqrt [3]{1-i \sqrt {3}}-\sqrt [3]{2} x\right )}{9\ 2^{2/3} \sqrt [3]{1-i \sqrt {3}}}-\frac {\left (3+i \sqrt {3}\right ) \log \left (\sqrt [3]{1+i \sqrt {3}}-\sqrt [3]{2} x\right )}{9\ 2^{2/3} \sqrt [3]{1+i \sqrt {3}}}+\frac {\left (3-i \sqrt {3}\right ) \log \left (\left (1-i \sqrt {3}\right )^{2/3}+\sqrt [3]{2 \left (1-i \sqrt {3}\right )} x+2^{2/3} x^2\right )}{18\ 2^{2/3} \sqrt [3]{1-i \sqrt {3}}}+\frac {\left (3+i \sqrt {3}\right ) \log \left (\left (1+i \sqrt {3}\right )^{2/3}+\sqrt [3]{2 \left (1+i \sqrt {3}\right )} x+2^{2/3} x^2\right )}{18\ 2^{2/3} \sqrt [3]{1+i \sqrt {3}}} \] Output:

-1/x+1/6*(I-3^(1/2))*arctan(1/3*(1+2*x/(1/2-1/2*I*3^(1/2))^(1/3))*3^(1/2)) 
*2^(1/3)/(1-I*3^(1/2))^(1/3)-1/6*(3^(1/2)+I)*arctan(1/3*(1+2*x/(1/2+1/2*I* 
3^(1/2))^(1/3))*3^(1/2))*2^(1/3)/(1+I*3^(1/2))^(1/3)-1/18*(3-I*3^(1/2))*ln 
((1-I*3^(1/2))^(1/3)-2^(1/3)*x)*2^(1/3)/(1-I*3^(1/2))^(1/3)-1/18*(3+I*3^(1 
/2))*ln((1+I*3^(1/2))^(1/3)-2^(1/3)*x)*2^(1/3)/(1+I*3^(1/2))^(1/3)+1/36*(3 
-I*3^(1/2))*ln((1-I*3^(1/2))^(2/3)+(2-2*I*3^(1/2))^(1/3)*x+2^(2/3)*x^2)*2^ 
(1/3)/(1-I*3^(1/2))^(1/3)+1/36*(3+I*3^(1/2))*ln((1+I*3^(1/2))^(2/3)+(2+2*I 
*3^(1/2))^(1/3)*x+2^(2/3)*x^2)*2^(1/3)/(1+I*3^(1/2))^(1/3)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.02 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.15 \[ \int \frac {1}{x^2 \left (1-x^3+x^6\right )} \, dx=-\frac {1}{x}-\frac {1}{3} \text {RootSum}\left [1-\text {$\#$1}^3+\text {$\#$1}^6\&,\frac {-\log (x-\text {$\#$1})+\log (x-\text {$\#$1}) \text {$\#$1}^3}{-\text {$\#$1}+2 \text {$\#$1}^4}\&\right ] \] Input:

Integrate[1/(x^2*(1 - x^3 + x^6)),x]
 

Output:

-x^(-1) - RootSum[1 - #1^3 + #1^6 & , (-Log[x - #1] + Log[x - #1]*#1^3)/(- 
#1 + 2*#1^4) & ]/3
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 372, normalized size of antiderivative = 0.89, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.562, Rules used = {1704, 1834, 27, 821, 16, 1142, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 \left (x^6-x^3+1\right )} \, dx\)

\(\Big \downarrow \) 1704

\(\displaystyle \int \frac {x \left (1-x^3\right )}{x^6-x^3+1}dx-\frac {1}{x}\)

\(\Big \downarrow \) 1834

\(\displaystyle -\frac {1}{6} \left (3-i \sqrt {3}\right ) \int -\frac {2 x}{-2 x^3-i \sqrt {3}+1}dx-\frac {1}{6} \left (3+i \sqrt {3}\right ) \int -\frac {2 x}{-2 x^3+i \sqrt {3}+1}dx-\frac {1}{x}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \left (3-i \sqrt {3}\right ) \int \frac {x}{-2 x^3-i \sqrt {3}+1}dx+\frac {1}{3} \left (3+i \sqrt {3}\right ) \int \frac {x}{-2 x^3+i \sqrt {3}+1}dx-\frac {1}{x}\)

\(\Big \downarrow \) 821

\(\displaystyle \frac {1}{3} \left (3-i \sqrt {3}\right ) \left (\frac {\int \frac {1}{\sqrt [3]{1-i \sqrt {3}}-\sqrt [3]{2} x}dx}{3 \sqrt [3]{2 \left (1-i \sqrt {3}\right )}}-\frac {\int \frac {\sqrt [3]{1-i \sqrt {3}}-\sqrt [3]{2} x}{2^{2/3} x^2+\sqrt [3]{2 \left (1-i \sqrt {3}\right )} x+\left (1-i \sqrt {3}\right )^{2/3}}dx}{3 \sqrt [3]{2 \left (1-i \sqrt {3}\right )}}\right )+\frac {1}{3} \left (3+i \sqrt {3}\right ) \left (\frac {\int \frac {1}{\sqrt [3]{1+i \sqrt {3}}-\sqrt [3]{2} x}dx}{3 \sqrt [3]{2 \left (1+i \sqrt {3}\right )}}-\frac {\int \frac {\sqrt [3]{1+i \sqrt {3}}-\sqrt [3]{2} x}{2^{2/3} x^2+\sqrt [3]{2 \left (1+i \sqrt {3}\right )} x+\left (1+i \sqrt {3}\right )^{2/3}}dx}{3 \sqrt [3]{2 \left (1+i \sqrt {3}\right )}}\right )-\frac {1}{x}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {1}{3} \left (3-i \sqrt {3}\right ) \left (-\frac {\int \frac {\sqrt [3]{1-i \sqrt {3}}-\sqrt [3]{2} x}{2^{2/3} x^2+\sqrt [3]{2 \left (1-i \sqrt {3}\right )} x+\left (1-i \sqrt {3}\right )^{2/3}}dx}{3 \sqrt [3]{2 \left (1-i \sqrt {3}\right )}}-\frac {\log \left (-\sqrt [3]{2} x+\sqrt [3]{1-i \sqrt {3}}\right )}{3\ 2^{2/3} \sqrt [3]{1-i \sqrt {3}}}\right )+\frac {1}{3} \left (3+i \sqrt {3}\right ) \left (-\frac {\int \frac {\sqrt [3]{1+i \sqrt {3}}-\sqrt [3]{2} x}{2^{2/3} x^2+\sqrt [3]{2 \left (1+i \sqrt {3}\right )} x+\left (1+i \sqrt {3}\right )^{2/3}}dx}{3 \sqrt [3]{2 \left (1+i \sqrt {3}\right )}}-\frac {\log \left (-\sqrt [3]{2} x+\sqrt [3]{1+i \sqrt {3}}\right )}{3\ 2^{2/3} \sqrt [3]{1+i \sqrt {3}}}\right )-\frac {1}{x}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {1}{3} \left (3-i \sqrt {3}\right ) \left (-\frac {\frac {3}{2} \sqrt [3]{1-i \sqrt {3}} \int \frac {1}{2^{2/3} x^2+\sqrt [3]{2 \left (1-i \sqrt {3}\right )} x+\left (1-i \sqrt {3}\right )^{2/3}}dx-\frac {\int \frac {2\ 2^{2/3} x+\sqrt [3]{2 \left (1-i \sqrt {3}\right )}}{2^{2/3} x^2+\sqrt [3]{2 \left (1-i \sqrt {3}\right )} x+\left (1-i \sqrt {3}\right )^{2/3}}dx}{2 \sqrt [3]{2}}}{3 \sqrt [3]{2 \left (1-i \sqrt {3}\right )}}-\frac {\log \left (-\sqrt [3]{2} x+\sqrt [3]{1-i \sqrt {3}}\right )}{3\ 2^{2/3} \sqrt [3]{1-i \sqrt {3}}}\right )+\frac {1}{3} \left (3+i \sqrt {3}\right ) \left (-\frac {\frac {3}{2} \sqrt [3]{1+i \sqrt {3}} \int \frac {1}{2^{2/3} x^2+\sqrt [3]{2 \left (1+i \sqrt {3}\right )} x+\left (1+i \sqrt {3}\right )^{2/3}}dx-\frac {\int \frac {2\ 2^{2/3} x+\sqrt [3]{2 \left (1+i \sqrt {3}\right )}}{2^{2/3} x^2+\sqrt [3]{2 \left (1+i \sqrt {3}\right )} x+\left (1+i \sqrt {3}\right )^{2/3}}dx}{2 \sqrt [3]{2}}}{3 \sqrt [3]{2 \left (1+i \sqrt {3}\right )}}-\frac {\log \left (-\sqrt [3]{2} x+\sqrt [3]{1+i \sqrt {3}}\right )}{3\ 2^{2/3} \sqrt [3]{1+i \sqrt {3}}}\right )-\frac {1}{x}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {1}{3} \left (3-i \sqrt {3}\right ) \left (-\frac {-\frac {\int \frac {2\ 2^{2/3} x+\sqrt [3]{2 \left (1-i \sqrt {3}\right )}}{2^{2/3} x^2+\sqrt [3]{2 \left (1-i \sqrt {3}\right )} x+\left (1-i \sqrt {3}\right )^{2/3}}dx}{2 \sqrt [3]{2}}-\frac {3 \int \frac {1}{-\left (\frac {2 x}{\sqrt [3]{\frac {1}{2} \left (1-i \sqrt {3}\right )}}+1\right )^2-3}d\left (\frac {2 x}{\sqrt [3]{\frac {1}{2} \left (1-i \sqrt {3}\right )}}+1\right )}{\sqrt [3]{2}}}{3 \sqrt [3]{2 \left (1-i \sqrt {3}\right )}}-\frac {\log \left (-\sqrt [3]{2} x+\sqrt [3]{1-i \sqrt {3}}\right )}{3\ 2^{2/3} \sqrt [3]{1-i \sqrt {3}}}\right )+\frac {1}{3} \left (3+i \sqrt {3}\right ) \left (-\frac {-\frac {\int \frac {2\ 2^{2/3} x+\sqrt [3]{2 \left (1+i \sqrt {3}\right )}}{2^{2/3} x^2+\sqrt [3]{2 \left (1+i \sqrt {3}\right )} x+\left (1+i \sqrt {3}\right )^{2/3}}dx}{2 \sqrt [3]{2}}-\frac {3 \int \frac {1}{-\left (\frac {2 x}{\sqrt [3]{\frac {1}{2} \left (1+i \sqrt {3}\right )}}+1\right )^2-3}d\left (\frac {2 x}{\sqrt [3]{\frac {1}{2} \left (1+i \sqrt {3}\right )}}+1\right )}{\sqrt [3]{2}}}{3 \sqrt [3]{2 \left (1+i \sqrt {3}\right )}}-\frac {\log \left (-\sqrt [3]{2} x+\sqrt [3]{1+i \sqrt {3}}\right )}{3\ 2^{2/3} \sqrt [3]{1+i \sqrt {3}}}\right )-\frac {1}{x}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{3} \left (3-i \sqrt {3}\right ) \left (-\frac {\frac {\sqrt {3} \arctan \left (\frac {1+\frac {2 x}{\sqrt [3]{\frac {1}{2} \left (1-i \sqrt {3}\right )}}}{\sqrt {3}}\right )}{\sqrt [3]{2}}-\frac {\int \frac {2\ 2^{2/3} x+\sqrt [3]{2 \left (1-i \sqrt {3}\right )}}{2^{2/3} x^2+\sqrt [3]{2 \left (1-i \sqrt {3}\right )} x+\left (1-i \sqrt {3}\right )^{2/3}}dx}{2 \sqrt [3]{2}}}{3 \sqrt [3]{2 \left (1-i \sqrt {3}\right )}}-\frac {\log \left (-\sqrt [3]{2} x+\sqrt [3]{1-i \sqrt {3}}\right )}{3\ 2^{2/3} \sqrt [3]{1-i \sqrt {3}}}\right )+\frac {1}{3} \left (3+i \sqrt {3}\right ) \left (-\frac {\frac {\sqrt {3} \arctan \left (\frac {1+\frac {2 x}{\sqrt [3]{\frac {1}{2} \left (1+i \sqrt {3}\right )}}}{\sqrt {3}}\right )}{\sqrt [3]{2}}-\frac {\int \frac {2\ 2^{2/3} x+\sqrt [3]{2 \left (1+i \sqrt {3}\right )}}{2^{2/3} x^2+\sqrt [3]{2 \left (1+i \sqrt {3}\right )} x+\left (1+i \sqrt {3}\right )^{2/3}}dx}{2 \sqrt [3]{2}}}{3 \sqrt [3]{2 \left (1+i \sqrt {3}\right )}}-\frac {\log \left (-\sqrt [3]{2} x+\sqrt [3]{1+i \sqrt {3}}\right )}{3\ 2^{2/3} \sqrt [3]{1+i \sqrt {3}}}\right )-\frac {1}{x}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {1}{3} \left (3-i \sqrt {3}\right ) \left (-\frac {\frac {\sqrt {3} \arctan \left (\frac {1+\frac {2 x}{\sqrt [3]{\frac {1}{2} \left (1-i \sqrt {3}\right )}}}{\sqrt {3}}\right )}{\sqrt [3]{2}}-\frac {\log \left (2^{2/3} x^2+\sqrt [3]{2 \left (1-i \sqrt {3}\right )} x+\left (1-i \sqrt {3}\right )^{2/3}\right )}{2 \sqrt [3]{2}}}{3 \sqrt [3]{2 \left (1-i \sqrt {3}\right )}}-\frac {\log \left (-\sqrt [3]{2} x+\sqrt [3]{1-i \sqrt {3}}\right )}{3\ 2^{2/3} \sqrt [3]{1-i \sqrt {3}}}\right )+\frac {1}{3} \left (3+i \sqrt {3}\right ) \left (-\frac {\frac {\sqrt {3} \arctan \left (\frac {1+\frac {2 x}{\sqrt [3]{\frac {1}{2} \left (1+i \sqrt {3}\right )}}}{\sqrt {3}}\right )}{\sqrt [3]{2}}-\frac {\log \left (2^{2/3} x^2+\sqrt [3]{2 \left (1+i \sqrt {3}\right )} x+\left (1+i \sqrt {3}\right )^{2/3}\right )}{2 \sqrt [3]{2}}}{3 \sqrt [3]{2 \left (1+i \sqrt {3}\right )}}-\frac {\log \left (-\sqrt [3]{2} x+\sqrt [3]{1+i \sqrt {3}}\right )}{3\ 2^{2/3} \sqrt [3]{1+i \sqrt {3}}}\right )-\frac {1}{x}\)

Input:

Int[1/(x^2*(1 - x^3 + x^6)),x]
 

Output:

-x^(-1) + ((3 - I*Sqrt[3])*(-1/3*Log[(1 - I*Sqrt[3])^(1/3) - 2^(1/3)*x]/(2 
^(2/3)*(1 - I*Sqrt[3])^(1/3)) - ((Sqrt[3]*ArcTan[(1 + (2*x)/((1 - I*Sqrt[3 
])/2)^(1/3))/Sqrt[3]])/2^(1/3) - Log[(1 - I*Sqrt[3])^(2/3) + (2*(1 - I*Sqr 
t[3]))^(1/3)*x + 2^(2/3)*x^2]/(2*2^(1/3)))/(3*(2*(1 - I*Sqrt[3]))^(1/3)))) 
/3 + ((3 + I*Sqrt[3])*(-1/3*Log[(1 + I*Sqrt[3])^(1/3) - 2^(1/3)*x]/(2^(2/3 
)*(1 + I*Sqrt[3])^(1/3)) - ((Sqrt[3]*ArcTan[(1 + (2*x)/((1 + I*Sqrt[3])/2) 
^(1/3))/Sqrt[3]])/2^(1/3) - Log[(1 + I*Sqrt[3])^(2/3) + (2*(1 + I*Sqrt[3]) 
)^(1/3)*x + 2^(2/3)*x^2]/(2*2^(1/3)))/(3*(2*(1 + I*Sqrt[3]))^(1/3))))/3
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 821
Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> Simp[-(3*Rt[a, 3]*Rt[b, 3])^(- 
1)   Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]*Rt[b, 3]) 
 Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2 
*x^2), x], x] /; FreeQ[{a, b}, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 1704
Int[((d_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_ 
Symbol] :> Simp[(d*x)^(m + 1)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*d*(m + 1) 
)), x] - Simp[1/(a*d^n*(m + 1))   Int[(d*x)^(m + n)*(b*(m + n*(p + 1) + 1) 
+ c*(m + 2*n*(p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{ 
a, b, c, d, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && 
LtQ[m, -1] && IntegerQ[p]
 

rule 1834
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + 
 (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + 
 (2*c*d - b*e)/(2*q))   Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 
 - (2*c*d - b*e)/(2*q))   Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ 
[{a, b, c, d, e, f, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n 
, 0]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.04 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.08

method result size
risch \(-\frac {1}{x}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (27 \textit {\_Z}^{6}+9 \textit {\_Z}^{3}+1\right )}{\sum }\textit {\_R} \ln \left (-3 \textit {\_R}^{2}+x \right )\right )}{3}\) \(35\)
default \(-\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{6}-\textit {\_Z}^{3}+1\right )}{\sum }\frac {\left (\textit {\_R}^{4}-\textit {\_R} \right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{5}-\textit {\_R}^{2}}\right )}{3}-\frac {1}{x}\) \(50\)

Input:

int(1/x^2/(x^6-x^3+1),x,method=_RETURNVERBOSE)
 

Output:

-1/x+1/3*sum(_R*ln(-3*_R^2+x),_R=RootOf(27*_Z^6+9*_Z^3+1))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 217, normalized size of antiderivative = 0.52 \[ \int \frac {1}{x^2 \left (1-x^3+x^6\right )} \, dx=\frac {{\left (\sqrt {-3} x - x\right )} {\left (\frac {1}{6} \, \sqrt {-\frac {1}{3}} - \frac {1}{6}\right )}^{\frac {1}{3}} \log \left (3 \, {\left (\frac {1}{6} \, \sqrt {-\frac {1}{3}} - \frac {1}{6}\right )}^{\frac {2}{3}} {\left (\sqrt {-3} + 1\right )} + 2 \, x\right ) + {\left (\sqrt {-3} x - x\right )} {\left (-\frac {1}{6} \, \sqrt {-\frac {1}{3}} - \frac {1}{6}\right )}^{\frac {1}{3}} \log \left (3 \, {\left (-\frac {1}{6} \, \sqrt {-\frac {1}{3}} - \frac {1}{6}\right )}^{\frac {2}{3}} {\left (\sqrt {-3} + 1\right )} + 2 \, x\right ) - {\left (\sqrt {-3} x + x\right )} {\left (\frac {1}{6} \, \sqrt {-\frac {1}{3}} - \frac {1}{6}\right )}^{\frac {1}{3}} \log \left (-3 \, {\left (\frac {1}{6} \, \sqrt {-\frac {1}{3}} - \frac {1}{6}\right )}^{\frac {2}{3}} {\left (\sqrt {-3} - 1\right )} + 2 \, x\right ) - {\left (\sqrt {-3} x + x\right )} {\left (-\frac {1}{6} \, \sqrt {-\frac {1}{3}} - \frac {1}{6}\right )}^{\frac {1}{3}} \log \left (-3 \, {\left (-\frac {1}{6} \, \sqrt {-\frac {1}{3}} - \frac {1}{6}\right )}^{\frac {2}{3}} {\left (\sqrt {-3} - 1\right )} + 2 \, x\right ) + 2 \, x {\left (\frac {1}{6} \, \sqrt {-\frac {1}{3}} - \frac {1}{6}\right )}^{\frac {1}{3}} \log \left (x - 3 \, {\left (\frac {1}{6} \, \sqrt {-\frac {1}{3}} - \frac {1}{6}\right )}^{\frac {2}{3}}\right ) + 2 \, x {\left (-\frac {1}{6} \, \sqrt {-\frac {1}{3}} - \frac {1}{6}\right )}^{\frac {1}{3}} \log \left (x - 3 \, {\left (-\frac {1}{6} \, \sqrt {-\frac {1}{3}} - \frac {1}{6}\right )}^{\frac {2}{3}}\right ) - 6}{6 \, x} \] Input:

integrate(1/x^2/(x^6-x^3+1),x, algorithm="fricas")
 

Output:

1/6*((sqrt(-3)*x - x)*(1/6*sqrt(-1/3) - 1/6)^(1/3)*log(3*(1/6*sqrt(-1/3) - 
 1/6)^(2/3)*(sqrt(-3) + 1) + 2*x) + (sqrt(-3)*x - x)*(-1/6*sqrt(-1/3) - 1/ 
6)^(1/3)*log(3*(-1/6*sqrt(-1/3) - 1/6)^(2/3)*(sqrt(-3) + 1) + 2*x) - (sqrt 
(-3)*x + x)*(1/6*sqrt(-1/3) - 1/6)^(1/3)*log(-3*(1/6*sqrt(-1/3) - 1/6)^(2/ 
3)*(sqrt(-3) - 1) + 2*x) - (sqrt(-3)*x + x)*(-1/6*sqrt(-1/3) - 1/6)^(1/3)* 
log(-3*(-1/6*sqrt(-1/3) - 1/6)^(2/3)*(sqrt(-3) - 1) + 2*x) + 2*x*(1/6*sqrt 
(-1/3) - 1/6)^(1/3)*log(x - 3*(1/6*sqrt(-1/3) - 1/6)^(2/3)) + 2*x*(-1/6*sq 
rt(-1/3) - 1/6)^(1/3)*log(x - 3*(-1/6*sqrt(-1/3) - 1/6)^(2/3)) - 6)/x
 

Sympy [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.06 \[ \int \frac {1}{x^2 \left (1-x^3+x^6\right )} \, dx=\operatorname {RootSum} {\left (19683 t^{6} + 243 t^{3} + 1, \left ( t \mapsto t \log {\left (- 27 t^{2} + x \right )} \right )\right )} - \frac {1}{x} \] Input:

integrate(1/x**2/(x**6-x**3+1),x)
 

Output:

RootSum(19683*_t**6 + 243*_t**3 + 1, Lambda(_t, _t*log(-27*_t**2 + x))) - 
1/x
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {1}{x^2 \left (1-x^3+x^6\right )} \, dx=\int { \frac {1}{{\left (x^{6} - x^{3} + 1\right )} x^{2}} \,d x } \] Input:

integrate(1/x^2/(x^6-x^3+1),x, algorithm="maxima")
 

Output:

-1/x - integrate((x^4 - x)/(x^6 - x^3 + 1), x)
 

Giac [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 829 vs. \(2 (260) = 520\).

Time = 0.13 (sec) , antiderivative size = 829, normalized size of antiderivative = 1.99 \[ \int \frac {1}{x^2 \left (1-x^3+x^6\right )} \, dx=\text {Too large to display} \] Input:

integrate(1/x^2/(x^6-x^3+1),x, algorithm="giac")
 

Output:

1/9*(sqrt(3)*cos(4/9*pi)^5 - 10*sqrt(3)*cos(4/9*pi)^3*sin(4/9*pi)^2 + 5*sq 
rt(3)*cos(4/9*pi)*sin(4/9*pi)^4 - 5*cos(4/9*pi)^4*sin(4/9*pi) + 10*cos(4/9 
*pi)^2*sin(4/9*pi)^3 - sin(4/9*pi)^5 + 2*sqrt(3)*cos(4/9*pi)^2 - 2*sqrt(3) 
*sin(4/9*pi)^2 - 4*cos(4/9*pi)*sin(4/9*pi))*arctan(1/2*((-I*sqrt(3) - 1)*c 
os(4/9*pi) + 2*x)/((1/2*I*sqrt(3) + 1/2)*sin(4/9*pi))) + 1/9*(sqrt(3)*cos( 
2/9*pi)^5 - 10*sqrt(3)*cos(2/9*pi)^3*sin(2/9*pi)^2 + 5*sqrt(3)*cos(2/9*pi) 
*sin(2/9*pi)^4 - 5*cos(2/9*pi)^4*sin(2/9*pi) + 10*cos(2/9*pi)^2*sin(2/9*pi 
)^3 - sin(2/9*pi)^5 + 2*sqrt(3)*cos(2/9*pi)^2 - 2*sqrt(3)*sin(2/9*pi)^2 - 
4*cos(2/9*pi)*sin(2/9*pi))*arctan(1/2*((-I*sqrt(3) - 1)*cos(2/9*pi) + 2*x) 
/((1/2*I*sqrt(3) + 1/2)*sin(2/9*pi))) - 1/9*(sqrt(3)*cos(1/9*pi)^5 - 10*sq 
rt(3)*cos(1/9*pi)^3*sin(1/9*pi)^2 + 5*sqrt(3)*cos(1/9*pi)*sin(1/9*pi)^4 + 
5*cos(1/9*pi)^4*sin(1/9*pi) - 10*cos(1/9*pi)^2*sin(1/9*pi)^3 + sin(1/9*pi) 
^5 - 2*sqrt(3)*cos(1/9*pi)^2 + 2*sqrt(3)*sin(1/9*pi)^2 - 4*cos(1/9*pi)*sin 
(1/9*pi))*arctan(-1/2*((-I*sqrt(3) - 1)*cos(1/9*pi) - 2*x)/((1/2*I*sqrt(3) 
 + 1/2)*sin(1/9*pi))) + 1/18*(5*sqrt(3)*cos(4/9*pi)^4*sin(4/9*pi) - 10*sqr 
t(3)*cos(4/9*pi)^2*sin(4/9*pi)^3 + sqrt(3)*sin(4/9*pi)^5 + cos(4/9*pi)^5 - 
 10*cos(4/9*pi)^3*sin(4/9*pi)^2 + 5*cos(4/9*pi)*sin(4/9*pi)^4 + 4*sqrt(3)* 
cos(4/9*pi)*sin(4/9*pi) + 2*cos(4/9*pi)^2 - 2*sin(4/9*pi)^2)*log((-I*sqrt( 
3)*cos(4/9*pi) - cos(4/9*pi))*x + x^2 + 1) + 1/18*(5*sqrt(3)*cos(2/9*pi)^4 
*sin(2/9*pi) - 10*sqrt(3)*cos(2/9*pi)^2*sin(2/9*pi)^3 + sqrt(3)*sin(2/9...
 

Mupad [B] (verification not implemented)

Time = 20.04 (sec) , antiderivative size = 286, normalized size of antiderivative = 0.69 \[ \int \frac {1}{x^2 \left (1-x^3+x^6\right )} \, dx=\frac {\ln \left (x-\frac {2^{1/3}\,3^{2/3}\,{\left (-3+\sqrt {3}\,1{}\mathrm {i}\right )}^{2/3}}{6}\right )\,{\left (-36+\sqrt {3}\,12{}\mathrm {i}\right )}^{1/3}}{18}-\frac {1}{x}+\frac {\ln \left (x-\frac {{\left (-36-\sqrt {3}\,12{}\mathrm {i}\right )}^{2/3}}{12}\right )\,{\left (-36-\sqrt {3}\,12{}\mathrm {i}\right )}^{1/3}}{18}-\frac {2^{2/3}\,\ln \left (x-\frac {2^{1/3}\,{\left (-3-\sqrt {3}\,1{}\mathrm {i}\right )}^{2/3}\,{\left (3^{1/3}-3^{5/6}\,1{}\mathrm {i}\right )}^2}{24}\right )\,{\left (-3-\sqrt {3}\,1{}\mathrm {i}\right )}^{1/3}\,\left (3^{1/3}-3^{5/6}\,1{}\mathrm {i}\right )}{36}-\frac {2^{2/3}\,\ln \left (x-\frac {2^{1/3}\,{\left (-3-\sqrt {3}\,1{}\mathrm {i}\right )}^{2/3}\,{\left (3^{1/3}+3^{5/6}\,1{}\mathrm {i}\right )}^2}{24}\right )\,{\left (-3-\sqrt {3}\,1{}\mathrm {i}\right )}^{1/3}\,\left (3^{1/3}+3^{5/6}\,1{}\mathrm {i}\right )}{36}-\frac {2^{2/3}\,\ln \left (x-\frac {2^{1/3}\,{\left (-3+\sqrt {3}\,1{}\mathrm {i}\right )}^{2/3}\,{\left (3^{1/3}-3^{5/6}\,1{}\mathrm {i}\right )}^2}{24}\right )\,{\left (-3+\sqrt {3}\,1{}\mathrm {i}\right )}^{1/3}\,\left (3^{1/3}-3^{5/6}\,1{}\mathrm {i}\right )}{36}-\frac {2^{2/3}\,\ln \left (x-\frac {2^{1/3}\,{\left (-3+\sqrt {3}\,1{}\mathrm {i}\right )}^{2/3}\,{\left (3^{1/3}+3^{5/6}\,1{}\mathrm {i}\right )}^2}{24}\right )\,{\left (-3+\sqrt {3}\,1{}\mathrm {i}\right )}^{1/3}\,\left (3^{1/3}+3^{5/6}\,1{}\mathrm {i}\right )}{36} \] Input:

int(1/(x^2*(x^6 - x^3 + 1)),x)
 

Output:

(log(x - (2^(1/3)*3^(2/3)*(3^(1/2)*1i - 3)^(2/3))/6)*(3^(1/2)*12i - 36)^(1 
/3))/18 - 1/x + (log(x - (- 3^(1/2)*12i - 36)^(2/3)/12)*(- 3^(1/2)*12i - 3 
6)^(1/3))/18 - (2^(2/3)*log(x - (2^(1/3)*(- 3^(1/2)*1i - 3)^(2/3)*(3^(1/3) 
 - 3^(5/6)*1i)^2)/24)*(- 3^(1/2)*1i - 3)^(1/3)*(3^(1/3) - 3^(5/6)*1i))/36 
- (2^(2/3)*log(x - (2^(1/3)*(- 3^(1/2)*1i - 3)^(2/3)*(3^(1/3) + 3^(5/6)*1i 
)^2)/24)*(- 3^(1/2)*1i - 3)^(1/3)*(3^(1/3) + 3^(5/6)*1i))/36 - (2^(2/3)*lo 
g(x - (2^(1/3)*(3^(1/2)*1i - 3)^(2/3)*(3^(1/3) - 3^(5/6)*1i)^2)/24)*(3^(1/ 
2)*1i - 3)^(1/3)*(3^(1/3) - 3^(5/6)*1i))/36 - (2^(2/3)*log(x - (2^(1/3)*(3 
^(1/2)*1i - 3)^(2/3)*(3^(1/3) + 3^(5/6)*1i)^2)/24)*(3^(1/2)*1i - 3)^(1/3)* 
(3^(1/3) + 3^(5/6)*1i))/36
 

Reduce [F]

\[ \int \frac {1}{x^2 \left (1-x^3+x^6\right )} \, dx=\frac {-\left (\int \frac {x^{4}}{x^{6}-x^{3}+1}d x \right ) x +\left (\int \frac {x}{x^{6}-x^{3}+1}d x \right ) x -1}{x} \] Input:

int(1/x^2/(x^6-x^3+1),x)
 

Output:

( - int(x**4/(x**6 - x**3 + 1),x)*x + int(x/(x**6 - x**3 + 1),x)*x - 1)/x