\(\int \frac {x^4}{a+b x^4+c x^8} \, dx\) [57]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 325 \[ \int \frac {x^4}{a+b x^4+c x^8} \, dx=\frac {\sqrt [4]{-b-\sqrt {b^2-4 a c}} \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt {b^2-4 a c}}-\frac {\sqrt [4]{-b+\sqrt {b^2-4 a c}} \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt {b^2-4 a c}}+\frac {\sqrt [4]{-b-\sqrt {b^2-4 a c}} \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt {b^2-4 a c}}-\frac {\sqrt [4]{-b+\sqrt {b^2-4 a c}} \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \sqrt {b^2-4 a c}} \] Output:

1/4*(-b-(-4*a*c+b^2)^(1/2))^(1/4)*arctan(2^(1/4)*c^(1/4)*x/(-b-(-4*a*c+b^2 
)^(1/2))^(1/4))*2^(3/4)/c^(1/4)/(-4*a*c+b^2)^(1/2)-1/4*(-b+(-4*a*c+b^2)^(1 
/2))^(1/4)*arctan(2^(1/4)*c^(1/4)*x/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*2^(3/4) 
/c^(1/4)/(-4*a*c+b^2)^(1/2)+1/4*(-b-(-4*a*c+b^2)^(1/2))^(1/4)*arctanh(2^(1 
/4)*c^(1/4)*x/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*2^(3/4)/c^(1/4)/(-4*a*c+b^2)^ 
(1/2)-1/4*(-b+(-4*a*c+b^2)^(1/2))^(1/4)*arctanh(2^(1/4)*c^(1/4)*x/(-b+(-4* 
a*c+b^2)^(1/2))^(1/4))*2^(3/4)/c^(1/4)/(-4*a*c+b^2)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.02 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.13 \[ \int \frac {x^4}{a+b x^4+c x^8} \, dx=\frac {1}{4} \text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {\log (x-\text {$\#$1}) \text {$\#$1}}{b+2 c \text {$\#$1}^4}\&\right ] \] Input:

Integrate[x^4/(a + b*x^4 + c*x^8),x]
 

Output:

RootSum[a + b*#1^4 + c*#1^8 & , (Log[x - #1]*#1)/(b + 2*c*#1^4) & ]/4
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 312, normalized size of antiderivative = 0.96, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {1710, 756, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4}{a+b x^4+c x^8} \, dx\)

\(\Big \downarrow \) 1710

\(\displaystyle \frac {1}{2} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c x^4+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \int \frac {1}{c x^4+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx\)

\(\Big \downarrow \) 756

\(\displaystyle \frac {1}{2} \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \left (-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2}dx}{\sqrt {-\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x^2+\sqrt {-b-\sqrt {b^2-4 a c}}}dx}{\sqrt {-\sqrt {b^2-4 a c}-b}}\right )+\frac {1}{2} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \left (-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x^2}dx}{\sqrt {\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x^2+\sqrt {\sqrt {b^2-4 a c}-b}}dx}{\sqrt {\sqrt {b^2-4 a c}-b}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {1}{2} \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \left (-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2}dx}{\sqrt {-\sqrt {b^2-4 a c}-b}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )+\frac {1}{2} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \left (-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x^2}dx}{\sqrt {\sqrt {b^2-4 a c}-b}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{2} \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \left (-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )+\frac {1}{2} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \left (-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )\)

Input:

Int[x^4/(a + b*x^4 + c*x^8),x]
 

Output:

((1 + b/Sqrt[b^2 - 4*a*c])*(-(ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 
4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4))) - ArcTanh 
[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b 
- Sqrt[b^2 - 4*a*c])^(3/4))))/2 + ((1 - b/Sqrt[b^2 - 4*a*c])*(-(ArcTan[(2^ 
(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b + Sq 
rt[b^2 - 4*a*c])^(3/4))) - ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4* 
a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))))/2
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 1710
Int[((d_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(d^n/2)*(b/q + 1)   Int[(d*x)^(m 
- n)/(b/2 + q/2 + c*x^n), x], x] - Simp[(d^n/2)*(b/q - 1)   Int[(d*x)^(m - 
n)/(b/2 - q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] & 
& NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GeQ[m, n]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.04 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.13

method result size
default \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8} c +\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\textit {\_R}^{4} \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}\right )}{4}\) \(43\)
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8} c +\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\textit {\_R}^{4} \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}\right )}{4}\) \(43\)

Input:

int(x^4/(c*x^8+b*x^4+a),x,method=_RETURNVERBOSE)
 

Output:

1/4*sum(_R^4/(2*_R^7*c+_R^3*b)*ln(x-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2141 vs. \(2 (245) = 490\).

Time = 0.10 (sec) , antiderivative size = 2141, normalized size of antiderivative = 6.59 \[ \int \frac {x^4}{a+b x^4+c x^8} \, dx=\text {Too large to display} \] Input:

integrate(x^4/(c*x^8+b*x^4+a),x, algorithm="fricas")
 

Output:

1/4*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6* 
c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 
16*a^2*c^3)))*log(x + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)*sqrt(sqrt(1/2)*sq 
rt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 
48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))/sqrt(b^ 
6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)) - 1/4*sqrt(sqrt(1/2)* 
sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 
+ 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*log(x 
 - (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c - 8 
*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64 
*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))/sqrt(b^6*c^2 - 12*a*b^4*c^ 
3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)) + 1/4*sqrt(-sqrt(1/2)*sqrt(-(b + (b^4*c 
- 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 
 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*log(x + (b^4*c - 8*a*b^ 
2*c^2 + 16*a^2*c^3)*sqrt(-sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a 
^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c 
 - 8*a*b^2*c^2 + 16*a^2*c^3)))/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^ 
4 - 64*a^3*c^5)) - 1/4*sqrt(-sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 1 
6*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^ 
4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*log(x - (b^4*c - 8*a*b^2*c^2 + 16*a^2...
 

Sympy [A] (verification not implemented)

Time = 1.60 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.39 \[ \int \frac {x^4}{a+b x^4+c x^8} \, dx=\operatorname {RootSum} {\left (t^{8} \cdot \left (16777216 a^{4} c^{5} - 16777216 a^{3} b^{2} c^{4} + 6291456 a^{2} b^{4} c^{3} - 1048576 a b^{6} c^{2} + 65536 b^{8} c\right ) + t^{4} \cdot \left (4096 a^{2} b c^{2} - 2048 a b^{3} c + 256 b^{5}\right ) + a, \left ( t \mapsto t \log {\left (- 32768 t^{5} a^{2} c^{3} + 16384 t^{5} a b^{2} c^{2} - 2048 t^{5} b^{4} c - 4 t b + x \right )} \right )\right )} \] Input:

integrate(x**4/(c*x**8+b*x**4+a),x)
 

Output:

RootSum(_t**8*(16777216*a**4*c**5 - 16777216*a**3*b**2*c**4 + 6291456*a**2 
*b**4*c**3 - 1048576*a*b**6*c**2 + 65536*b**8*c) + _t**4*(4096*a**2*b*c**2 
 - 2048*a*b**3*c + 256*b**5) + a, Lambda(_t, _t*log(-32768*_t**5*a**2*c**3 
 + 16384*_t**5*a*b**2*c**2 - 2048*_t**5*b**4*c - 4*_t*b + x)))
 

Maxima [F]

\[ \int \frac {x^4}{a+b x^4+c x^8} \, dx=\int { \frac {x^{4}}{c x^{8} + b x^{4} + a} \,d x } \] Input:

integrate(x^4/(c*x^8+b*x^4+a),x, algorithm="maxima")
 

Output:

integrate(x^4/(c*x^8 + b*x^4 + a), x)
 

Giac [F]

\[ \int \frac {x^4}{a+b x^4+c x^8} \, dx=\int { \frac {x^{4}}{c x^{8} + b x^{4} + a} \,d x } \] Input:

integrate(x^4/(c*x^8+b*x^4+a),x, algorithm="giac")
 

Output:

integrate(x^4/(c*x^8 + b*x^4 + a), x)
 

Mupad [B] (verification not implemented)

Time = 21.34 (sec) , antiderivative size = 8169, normalized size of antiderivative = 25.14 \[ \int \frac {x^4}{a+b x^4+c x^8} \, dx=\text {Too large to display} \] Input:

int(x^4/(a + b*x^4 + c*x^8),x)
 

Output:

- atan((((-(b^5 + (-(4*a*c - b^2)^5)^(1/2) + 16*a^2*b*c^2 - 8*a*b^3*c)/(51 
2*(b^8*c + 256*a^4*c^5 - 16*a*b^6*c^2 + 96*a^2*b^4*c^3 - 256*a^3*b^2*c^4)) 
)^(1/4)*(((-(b^5 + (-(4*a*c - b^2)^5)^(1/2) + 16*a^2*b*c^2 - 8*a*b^3*c)/(5 
12*(b^8*c + 256*a^4*c^5 - 16*a*b^6*c^2 + 96*a^2*b^4*c^3 - 256*a^3*b^2*c^4) 
))^(1/4)*(262144*a^5*c^7 - 4096*a^2*b^6*c^4 + 49152*a^3*b^4*c^5 - 196608*a 
^4*b^2*c^6) + x*(16384*a^4*b*c^6 + 1024*a^2*b^5*c^4 - 8192*a^3*b^3*c^5))*( 
-(b^5 + (-(4*a*c - b^2)^5)^(1/2) + 16*a^2*b*c^2 - 8*a*b^3*c)/(512*(b^8*c + 
 256*a^4*c^5 - 16*a*b^6*c^2 + 96*a^2*b^4*c^3 - 256*a^3*b^2*c^4)))^(3/4) + 
64*a^3*b*c^4 - 16*a^2*b^3*c^3) - x*(8*a^3*c^4 - 4*a^2*b^2*c^3))*(-(b^5 + ( 
-(4*a*c - b^2)^5)^(1/2) + 16*a^2*b*c^2 - 8*a*b^3*c)/(512*(b^8*c + 256*a^4* 
c^5 - 16*a*b^6*c^2 + 96*a^2*b^4*c^3 - 256*a^3*b^2*c^4)))^(1/4)*1i - ((-(b^ 
5 + (-(4*a*c - b^2)^5)^(1/2) + 16*a^2*b*c^2 - 8*a*b^3*c)/(512*(b^8*c + 256 
*a^4*c^5 - 16*a*b^6*c^2 + 96*a^2*b^4*c^3 - 256*a^3*b^2*c^4)))^(1/4)*(((-(b 
^5 + (-(4*a*c - b^2)^5)^(1/2) + 16*a^2*b*c^2 - 8*a*b^3*c)/(512*(b^8*c + 25 
6*a^4*c^5 - 16*a*b^6*c^2 + 96*a^2*b^4*c^3 - 256*a^3*b^2*c^4)))^(1/4)*(2621 
44*a^5*c^7 - 4096*a^2*b^6*c^4 + 49152*a^3*b^4*c^5 - 196608*a^4*b^2*c^6) - 
x*(16384*a^4*b*c^6 + 1024*a^2*b^5*c^4 - 8192*a^3*b^3*c^5))*(-(b^5 + (-(4*a 
*c - b^2)^5)^(1/2) + 16*a^2*b*c^2 - 8*a*b^3*c)/(512*(b^8*c + 256*a^4*c^5 - 
 16*a*b^6*c^2 + 96*a^2*b^4*c^3 - 256*a^3*b^2*c^4)))^(3/4) + 64*a^3*b*c^4 - 
 16*a^2*b^3*c^3) + x*(8*a^3*c^4 - 4*a^2*b^2*c^3))*(-(b^5 + (-(4*a*c - b...
 

Reduce [F]

\[ \int \frac {x^4}{a+b x^4+c x^8} \, dx=\int \frac {x^{4}}{c \,x^{8}+b \,x^{4}+a}d x \] Input:

int(x^4/(c*x^8+b*x^4+a),x)
 

Output:

int(x^4/(c*x^8+b*x^4+a),x)