\(\int \frac {d+\frac {e}{x^2}}{c+\frac {a}{x^4}+\frac {b}{x^2}} \, dx\) [55]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 208 \[ \int \frac {d+\frac {e}{x^2}}{c+\frac {a}{x^4}+\frac {b}{x^2}} \, dx=\frac {d x}{c}-\frac {\left (b d-c e-\frac {b^2 d-2 a c d-b c e}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\left (b d-c e+\frac {b^2 d-2 a c d-b c e}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}} \] Output:

d*x/c-1/2*(b*d-c*e-(-2*a*c*d+b^2*d-b*c*e)/(-4*a*c+b^2)^(1/2))*arctan(2^(1/ 
2)*c^(1/2)*x/(b-(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)/c^(3/2)/(b-(-4*a*c+b^2) 
^(1/2))^(1/2)-1/2*(b*d-c*e+(-2*a*c*d+b^2*d-b*c*e)/(-4*a*c+b^2)^(1/2))*arct 
an(2^(1/2)*c^(1/2)*x/(b+(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)/c^(3/2)/(b+(-4* 
a*c+b^2)^(1/2))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.21 \[ \int \frac {d+\frac {e}{x^2}}{c+\frac {a}{x^4}+\frac {b}{x^2}} \, dx=\frac {d x}{c}-\frac {\left (-b^2 d+2 a c d+b \sqrt {b^2-4 a c} d+b c e-c \sqrt {b^2-4 a c} e\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\left (b^2 d-2 a c d+b \sqrt {b^2-4 a c} d-b c e-c \sqrt {b^2-4 a c} e\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}} \] Input:

Integrate[(d + e/x^2)/(c + a/x^4 + b/x^2),x]
 

Output:

(d*x)/c - ((-(b^2*d) + 2*a*c*d + b*Sqrt[b^2 - 4*a*c]*d + b*c*e - c*Sqrt[b^ 
2 - 4*a*c]*e)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sq 
rt[2]*c^(3/2)*Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - ((b^2*d - 2 
*a*c*d + b*Sqrt[b^2 - 4*a*c]*d - b*c*e - c*Sqrt[b^2 - 4*a*c]*e)*ArcTan[(Sq 
rt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqrt[b^2 - 
 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]])
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.02, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {1727, 1602, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+\frac {e}{x^2}}{\frac {a}{x^4}+\frac {b}{x^2}+c} \, dx\)

\(\Big \downarrow \) 1727

\(\displaystyle \int \frac {x^2 \left (d x^2+e\right )}{a+b x^2+c x^4}dx\)

\(\Big \downarrow \) 1602

\(\displaystyle \frac {d x}{c}-\frac {\int \frac {(b d-c e) x^2+a d}{c x^4+b x^2+a}dx}{c}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {d x}{c}-\frac {\frac {1}{2} \left (-\frac {-2 a c d+b^2 d-b c e}{\sqrt {b^2-4 a c}}+b d-c e\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} \left (\frac {-2 a c d+b^2 d-b c e}{\sqrt {b^2-4 a c}}+b d-c e\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{c}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {d x}{c}-\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right ) \left (-\frac {-2 a c d+b^2 d-b c e}{\sqrt {b^2-4 a c}}+b d-c e\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right ) \left (\frac {-2 a c d+b^2 d-b c e}{\sqrt {b^2-4 a c}}+b d-c e\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}}{c}\)

Input:

Int[(d + e/x^2)/(c + a/x^4 + b/x^2),x]
 

Output:

(d*x)/c - (((b*d - c*e - (b^2*d - 2*a*c*d - b*c*e)/Sqrt[b^2 - 4*a*c])*ArcT 
an[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt 
[b - Sqrt[b^2 - 4*a*c]]) + ((b*d - c*e + (b^2*d - 2*a*c*d - b*c*e)/Sqrt[b^ 
2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt 
[2]*Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/c
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1602
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*( 
x_)^4)^(p_), x_Symbol] :> Simp[e*f*(f*x)^(m - 1)*((a + b*x^2 + c*x^4)^(p + 
1)/(c*(m + 4*p + 3))), x] - Simp[f^2/(c*(m + 4*p + 3))   Int[(f*x)^(m - 2)* 
(a + b*x^2 + c*x^4)^p*Simp[a*e*(m - 1) + (b*e*(m + 2*p + 1) - c*d*(m + 4*p 
+ 3))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && NeQ[b^2 - 4*a*c 
, 0] && GtQ[m, 1] && NeQ[m + 4*p + 3, 0] && IntegerQ[2*p] && (IntegerQ[p] | 
| IntegerQ[m])
 

rule 1727
Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^( 
n_))^(q_.), x_Symbol] :> Int[x^(n*(2*p + q))*(e + d/x^n)^q*(c + b/x^n + a/x 
^(2*n))^p, x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && IntegersQ[ 
p, q] && NegQ[n]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.08 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.31

method result size
risch \(\frac {d x}{c}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (\left (-b d +c e \right ) \textit {\_R}^{2}-a d \right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} c +\textit {\_R} b}}{2 c}\) \(65\)
default \(\frac {d x}{c}-\frac {\left (-b \sqrt {-4 a c +b^{2}}\, d +c e \sqrt {-4 a c +b^{2}}-2 a c d +d \,b^{2}-b c e \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}+\frac {\left (-b \sqrt {-4 a c +b^{2}}\, d +c e \sqrt {-4 a c +b^{2}}+2 a c d -d \,b^{2}+b c e \right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\) \(212\)

Input:

int((d+e/x^2)/(c+a/x^4+b/x^2),x,method=_RETURNVERBOSE)
 

Output:

d*x/c+1/2/c*sum(((-b*d+c*e)*_R^2-a*d)/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_ 
Z^4*c+_Z^2*b+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2540 vs. \(2 (172) = 344\).

Time = 0.22 (sec) , antiderivative size = 2540, normalized size of antiderivative = 12.21 \[ \int \frac {d+\frac {e}{x^2}}{c+\frac {a}{x^4}+\frac {b}{x^2}} \, dx=\text {Too large to display} \] Input:

integrate((d+e/x^2)/(c+a/x^4+b/x^2),x, algorithm="fricas")
 

Output:

1/2*(sqrt(1/2)*c*sqrt(-(b*c^2*e^2 + (b^3 - 3*a*b*c)*d^2 - 2*(b^2*c - 2*a*c 
^2)*d*e + (b^2*c^3 - 4*a*c^4)*sqrt(-(4*b*c^3*d*e^3 - c^4*e^4 - (b^4 - 2*a* 
b^2*c + a^2*c^2)*d^4 + 4*(b^3*c - a*b*c^2)*d^3*e - 2*(3*b^2*c^2 - a*c^3)*d 
^2*e^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log(2*(3*b^2*c*d^2*e^2 
- 3*b*c^2*d*e^3 + c^3*e^4 + (a*b^2 - a^2*c)*d^4 - (b^3 + a*b*c)*d^3*e)*x + 
 sqrt(1/2)*((b^4 - 5*a*b^2*c + 4*a^2*c^2)*d^3 - 2*(b^3*c - 4*a*b*c^2)*d^2* 
e + (b^2*c^2 - 4*a*c^3)*d*e^2 - ((b^3*c^3 - 4*a*b*c^4)*d - 2*(b^2*c^4 - 4* 
a*c^5)*e)*sqrt(-(4*b*c^3*d*e^3 - c^4*e^4 - (b^4 - 2*a*b^2*c + a^2*c^2)*d^4 
 + 4*(b^3*c - a*b*c^2)*d^3*e - 2*(3*b^2*c^2 - a*c^3)*d^2*e^2)/(b^2*c^6 - 4 
*a*c^7)))*sqrt(-(b*c^2*e^2 + (b^3 - 3*a*b*c)*d^2 - 2*(b^2*c - 2*a*c^2)*d*e 
 + (b^2*c^3 - 4*a*c^4)*sqrt(-(4*b*c^3*d*e^3 - c^4*e^4 - (b^4 - 2*a*b^2*c + 
 a^2*c^2)*d^4 + 4*(b^3*c - a*b*c^2)*d^3*e - 2*(3*b^2*c^2 - a*c^3)*d^2*e^2) 
/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))) - sqrt(1/2)*c*sqrt(-(b*c^2*e^ 
2 + (b^3 - 3*a*b*c)*d^2 - 2*(b^2*c - 2*a*c^2)*d*e + (b^2*c^3 - 4*a*c^4)*sq 
rt(-(4*b*c^3*d*e^3 - c^4*e^4 - (b^4 - 2*a*b^2*c + a^2*c^2)*d^4 + 4*(b^3*c 
- a*b*c^2)*d^3*e - 2*(3*b^2*c^2 - a*c^3)*d^2*e^2)/(b^2*c^6 - 4*a*c^7)))/(b 
^2*c^3 - 4*a*c^4))*log(2*(3*b^2*c*d^2*e^2 - 3*b*c^2*d*e^3 + c^3*e^4 + (a*b 
^2 - a^2*c)*d^4 - (b^3 + a*b*c)*d^3*e)*x - sqrt(1/2)*((b^4 - 5*a*b^2*c + 4 
*a^2*c^2)*d^3 - 2*(b^3*c - 4*a*b*c^2)*d^2*e + (b^2*c^2 - 4*a*c^3)*d*e^2 - 
((b^3*c^3 - 4*a*b*c^4)*d - 2*(b^2*c^4 - 4*a*c^5)*e)*sqrt(-(4*b*c^3*d*e^...
 

Sympy [F(-1)]

Timed out. \[ \int \frac {d+\frac {e}{x^2}}{c+\frac {a}{x^4}+\frac {b}{x^2}} \, dx=\text {Timed out} \] Input:

integrate((d+e/x**2)/(c+a/x**4+b/x**2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {d+\frac {e}{x^2}}{c+\frac {a}{x^4}+\frac {b}{x^2}} \, dx=\int { \frac {d + \frac {e}{x^{2}}}{c + \frac {b}{x^{2}} + \frac {a}{x^{4}}} \,d x } \] Input:

integrate((d+e/x^2)/(c+a/x^4+b/x^2),x, algorithm="maxima")
 

Output:

d*x/c + integrate(-((b*d - c*e)*x^2 + a*d)/(c*x^4 + b*x^2 + a), x)/c
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3179 vs. \(2 (172) = 344\).

Time = 0.59 (sec) , antiderivative size = 3179, normalized size of antiderivative = 15.28 \[ \int \frac {d+\frac {e}{x^2}}{c+\frac {a}{x^4}+\frac {b}{x^2}} \, dx=\text {Too large to display} \] Input:

integrate((d+e/x^2)/(c+a/x^4+b/x^2),x, algorithm="giac")
 

Output:

d*x/c + 1/8*((2*b^5*c^2 - 16*a*b^3*c^3 + 32*a^2*b*c^4 - sqrt(2)*sqrt(b^2 - 
 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)* 
sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt 
(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c 
+ sqrt(b^2 - 4*a*c)*c)*a^2*b*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt 
(b^2 - 4*a*c)*c)*b^3*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 
 - 4*a*c)*c)*a*b*c^3 - 2*(b^2 - 4*a*c)*b^3*c^2 + 8*(b^2 - 4*a*c)*a*b*c^3)* 
c^2*d - (2*b^4*c^3 - 16*a*b^2*c^4 + 32*a^2*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c) 
*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt( 
b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b* 
c + sqrt(b^2 - 4*a*c)*c)*b^3*c^2 - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
 sqrt(b^2 - 4*a*c)*c)*a^2*c^3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqr 
t(b^2 - 4*a*c)*c)*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 
- 4*a*c)*c)*b^2*c^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4* 
a*c)*c)*a*c^4 - 2*(b^2 - 4*a*c)*b^2*c^3 + 8*(b^2 - 4*a*c)*a*c^4)*c^2*e - 2 
*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - 8*sqrt(2)*sqrt(b*c + 
 sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c) 
*c)*a*b^3*c^3 - 2*a*b^4*c^3 + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a 
^3*c^4 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 + sqrt(2)*...
 

Mupad [B] (verification not implemented)

Time = 21.27 (sec) , antiderivative size = 6366, normalized size of antiderivative = 30.61 \[ \int \frac {d+\frac {e}{x^2}}{c+\frac {a}{x^4}+\frac {b}{x^2}} \, dx=\text {Too large to display} \] Input:

int((d + e/x^2)/(c + a/x^4 + b/x^2),x)
 

Output:

(d*x)/c - atan(((((16*a^2*c^3*d - 4*a*b^2*c^2*d)/c - (2*x*(4*b^3*c^3 - 16* 
a*b*c^4)*(-(b^5*d^2 - b^2*d^2*(-(4*a*c - b^2)^3)^(1/2) + b^3*c^2*e^2 - c^2 
*e^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2*d^2 - 2*b^4*c*d*e - 7*a*b^3*c 
*d^2 + a*c*d^2*(-(4*a*c - b^2)^3)^(1/2) - 4*a*b*c^3*e^2 - 16*a^2*c^3*d*e + 
 12*a*b^2*c^2*d*e + 2*b*c*d*e*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b 
^4*c^3 - 8*a*b^2*c^4)))^(1/2))/c)*(-(b^5*d^2 - b^2*d^2*(-(4*a*c - b^2)^3)^ 
(1/2) + b^3*c^2*e^2 - c^2*e^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2*d^2 
- 2*b^4*c*d*e - 7*a*b^3*c*d^2 + a*c*d^2*(-(4*a*c - b^2)^3)^(1/2) - 4*a*b*c 
^3*e^2 - 16*a^2*c^3*d*e + 12*a*b^2*c^2*d*e + 2*b*c*d*e*(-(4*a*c - b^2)^3)^ 
(1/2))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2) - (2*x*(b^4*d^2 - 2 
*a*c^3*e^2 + 2*a^2*c^2*d^2 + b^2*c^2*e^2 - 2*b^3*c*d*e - 4*a*b^2*c*d^2 + 6 
*a*b*c^2*d*e))/c)*(-(b^5*d^2 - b^2*d^2*(-(4*a*c - b^2)^3)^(1/2) + b^3*c^2* 
e^2 - c^2*e^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2*d^2 - 2*b^4*c*d*e - 
7*a*b^3*c*d^2 + a*c*d^2*(-(4*a*c - b^2)^3)^(1/2) - 4*a*b*c^3*e^2 - 16*a^2* 
c^3*d*e + 12*a*b^2*c^2*d*e + 2*b*c*d*e*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^ 
2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2)*1i - (((16*a^2*c^3*d - 4*a*b^2*c^2* 
d)/c + (2*x*(4*b^3*c^3 - 16*a*b*c^4)*(-(b^5*d^2 - b^2*d^2*(-(4*a*c - b^2)^ 
3)^(1/2) + b^3*c^2*e^2 - c^2*e^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2*d 
^2 - 2*b^4*c*d*e - 7*a*b^3*c*d^2 + a*c*d^2*(-(4*a*c - b^2)^3)^(1/2) - 4*a* 
b*c^3*e^2 - 16*a^2*c^3*d*e + 12*a*b^2*c^2*d*e + 2*b*c*d*e*(-(4*a*c - b^...
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 914, normalized size of antiderivative = 4.39 \[ \int \frac {d+\frac {e}{x^2}}{c+\frac {a}{x^4}+\frac {b}{x^2}} \, dx =\text {Too large to display} \] Input:

int((d+e/x^2)/(c+a/x^4+b/x^2),x)
 

Output:

(2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 
 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b*c*d - 4*sqrt(a)*sqrt(2*sqrt(c 
)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqr 
t(c)*sqrt(a) + b))*c**2*e + 4*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sq 
rt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*c* 
d - 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b 
) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b**2*d + 2*sqrt(c)*sqrt(2*sq 
rt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2 
*sqrt(c)*sqrt(a) + b))*b*c*e - 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan( 
(sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b 
*c*d + 4*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) 
- b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*c**2*e - 4*sqrt(c)*sqrt(2 
*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqr 
t(2*sqrt(c)*sqrt(a) + b))*a*c*d + 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*at 
an((sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b) 
)*b**2*d - 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt 
(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b*c*e - sqrt(a)*sqrt( 
2*sqrt(c)*sqrt(a) - b)*log( - sqrt(2*sqrt(c)*sqrt(a) - b)*x + sqrt(a) + sq 
rt(c)*x**2)*b*c*d + 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) - b)*log( - sqrt(2*sq 
rt(c)*sqrt(a) - b)*x + sqrt(a) + sqrt(c)*x**2)*c**2*e + sqrt(a)*sqrt(2*...