\(\int \frac {d+e x^4}{x^2 (a+b x^4+c x^8)} \, dx\) [61]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 392 \[ \int \frac {d+e x^4}{x^2 \left (a+b x^4+c x^8\right )} \, dx=-\frac {d}{a x}-\frac {\sqrt [4]{c} \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b-\sqrt {b^2-4 a c}}}-\frac {\sqrt [4]{c} \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b+\sqrt {b^2-4 a c}}}+\frac {\sqrt [4]{c} \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b-\sqrt {b^2-4 a c}}}+\frac {\sqrt [4]{c} \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b+\sqrt {b^2-4 a c}}} \] Output:

-d/a/x-1/4*c^(1/4)*(d-(-2*a*e+b*d)/(-4*a*c+b^2)^(1/2))*arctan(2^(1/4)*c^(1 
/4)*x/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*2^(1/4)/a/(-b-(-4*a*c+b^2)^(1/2))^(1/ 
4)-1/4*c^(1/4)*(d+(-2*a*e+b*d)/(-4*a*c+b^2)^(1/2))*arctan(2^(1/4)*c^(1/4)* 
x/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*2^(1/4)/a/(-b+(-4*a*c+b^2)^(1/2))^(1/4)+1 
/4*c^(1/4)*(d-(-2*a*e+b*d)/(-4*a*c+b^2)^(1/2))*arctanh(2^(1/4)*c^(1/4)*x/( 
-b-(-4*a*c+b^2)^(1/2))^(1/4))*2^(1/4)/a/(-b-(-4*a*c+b^2)^(1/2))^(1/4)+1/4* 
c^(1/4)*(d+(-2*a*e+b*d)/(-4*a*c+b^2)^(1/2))*arctanh(2^(1/4)*c^(1/4)*x/(-b+ 
(-4*a*c+b^2)^(1/2))^(1/4))*2^(1/4)/a/(-b+(-4*a*c+b^2)^(1/2))^(1/4)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.06 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.22 \[ \int \frac {d+e x^4}{x^2 \left (a+b x^4+c x^8\right )} \, dx=-\frac {d}{a x}-\frac {\text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {b d \log (x-\text {$\#$1})-a e \log (x-\text {$\#$1})+c d \log (x-\text {$\#$1}) \text {$\#$1}^4}{b \text {$\#$1}+2 c \text {$\#$1}^5}\&\right ]}{4 a} \] Input:

Integrate[(d + e*x^4)/(x^2*(a + b*x^4 + c*x^8)),x]
 

Output:

-(d/(a*x)) - RootSum[a + b*#1^4 + c*#1^8 & , (b*d*Log[x - #1] - a*e*Log[x 
- #1] + c*d*Log[x - #1]*#1^4)/(b*#1 + 2*c*#1^5) & ]/(4*a)
 

Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 345, normalized size of antiderivative = 0.88, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {1828, 1834, 27, 827, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x^4}{x^2 \left (a+b x^4+c x^8\right )} \, dx\)

\(\Big \downarrow \) 1828

\(\displaystyle -\frac {\int \frac {x^2 \left (c d x^4+b d-a e\right )}{c x^8+b x^4+a}dx}{a}-\frac {d}{a x}\)

\(\Big \downarrow \) 1834

\(\displaystyle -\frac {\frac {1}{2} c \left (\frac {b d-2 a e}{\sqrt {b^2-4 a c}}+d\right ) \int \frac {2 x^2}{2 c x^4+b-\sqrt {b^2-4 a c}}dx+\frac {1}{2} c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \int \frac {2 x^2}{2 c x^4+b+\sqrt {b^2-4 a c}}dx}{a}-\frac {d}{a x}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {c \left (\frac {b d-2 a e}{\sqrt {b^2-4 a c}}+d\right ) \int \frac {x^2}{2 c x^4+b-\sqrt {b^2-4 a c}}dx+c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \int \frac {x^2}{2 c x^4+b+\sqrt {b^2-4 a c}}dx}{a}-\frac {d}{a x}\)

\(\Big \downarrow \) 827

\(\displaystyle -\frac {c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x^2+\sqrt {-b-\sqrt {b^2-4 a c}}}dx}{2 \sqrt {2} \sqrt {c}}-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2}dx}{2 \sqrt {2} \sqrt {c}}\right )+c \left (\frac {b d-2 a e}{\sqrt {b^2-4 a c}}+d\right ) \left (\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x^2+\sqrt {\sqrt {b^2-4 a c}-b}}dx}{2 \sqrt {2} \sqrt {c}}-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x^2}dx}{2 \sqrt {2} \sqrt {c}}\right )}{a}-\frac {d}{a x}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2}dx}{2 \sqrt {2} \sqrt {c}}\right )+c \left (\frac {b d-2 a e}{\sqrt {b^2-4 a c}}+d\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x^2}dx}{2 \sqrt {2} \sqrt {c}}\right )}{a}-\frac {d}{a x}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )+c \left (\frac {b d-2 a e}{\sqrt {b^2-4 a c}}+d\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{a}-\frac {d}{a x}\)

Input:

Int[(d + e*x^4)/(x^2*(a + b*x^4 + c*x^8)),x]
 

Output:

-(d/(a*x)) - (c*(d - (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*(ArcTan[(2^(1/4)*c^( 
1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b - Sqrt[b^2 
- 4*a*c])^(1/4)) - ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1 
/4)]/(2*2^(3/4)*c^(3/4)*(-b - Sqrt[b^2 - 4*a*c])^(1/4))) + c*(d + (b*d - 2 
*a*e)/Sqrt[b^2 - 4*a*c])*(ArcTan[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a* 
c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) - ArcTanh[(2 
^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b + 
 Sqrt[b^2 - 4*a*c])^(1/4))))/a
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 1828
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + ( 
c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[d*(f*x)^(m + 1)*((a + b*x^n + c*x^ 
(2*n))^(p + 1)/(a*f*(m + 1))), x] + Simp[1/(a*f^n*(m + 1))   Int[(f*x)^(m + 
 n)*(a + b*x^n + c*x^(2*n))^p*Simp[a*e*(m + 1) - b*d*(m + n*(p + 1) + 1) - 
c*d*(m + 2*n*(p + 1) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x 
] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[m, -1] && Int 
egerQ[p]
 

rule 1834
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + 
 (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + 
 (2*c*d - b*e)/(2*q))   Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 
 - (2*c*d - b*e)/(2*q))   Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ 
[{a, b, c, d, e, f, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n 
, 0]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.08 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.19

method result size
default \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8} c +\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-c d \,\textit {\_R}^{6}+\left (a e -b d \right ) \textit {\_R}^{2}\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{4 a}-\frac {d}{a x}\) \(73\)
risch \(\text {Expression too large to display}\) \(1333\)

Input:

int((e*x^4+d)/x^2/(c*x^8+b*x^4+a),x,method=_RETURNVERBOSE)
 

Output:

1/4/a*sum((-c*d*_R^6+(a*e-b*d)*_R^2)/(2*_R^7*c+_R^3*b)*ln(x-_R),_R=RootOf( 
_Z^8*c+_Z^4*b+a))-d/a/x
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 21400 vs. \(2 (312) = 624\).

Time = 120.72 (sec) , antiderivative size = 21400, normalized size of antiderivative = 54.59 \[ \int \frac {d+e x^4}{x^2 \left (a+b x^4+c x^8\right )} \, dx=\text {Too large to display} \] Input:

integrate((e*x^4+d)/x^2/(c*x^8+b*x^4+a),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {d+e x^4}{x^2 \left (a+b x^4+c x^8\right )} \, dx=\text {Timed out} \] Input:

integrate((e*x**4+d)/x**2/(c*x**8+b*x**4+a),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {d+e x^4}{x^2 \left (a+b x^4+c x^8\right )} \, dx=\int { \frac {e x^{4} + d}{{\left (c x^{8} + b x^{4} + a\right )} x^{2}} \,d x } \] Input:

integrate((e*x^4+d)/x^2/(c*x^8+b*x^4+a),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

-integrate((c*d*x^6 + (b*d - a*e)*x^2)/(c*x^8 + b*x^4 + a), x)/a - d/(a*x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {d+e x^4}{x^2 \left (a+b x^4+c x^8\right )} \, dx=\text {Timed out} \] Input:

integrate((e*x^4+d)/x^2/(c*x^8+b*x^4+a),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 29.40 (sec) , antiderivative size = 39028, normalized size of antiderivative = 99.56 \[ \int \frac {d+e x^4}{x^2 \left (a+b x^4+c x^8\right )} \, dx=\text {Too large to display} \] Input:

int((d + e*x^4)/(x^2*(a + b*x^4 + c*x^8)),x)
 

Output:

atan((((-(b^9*d^4 + a^4*b^5*e^4 + a^4*e^4*(-(4*a*c - b^2)^5)^(1/2) + b^4*d 
^4*(-(4*a*c - b^2)^5)^(1/2) + 80*a^4*b*c^4*d^4 - 8*a^5*b^3*c*e^4 + 16*a^6* 
b*c^2*e^4 - 4*a^3*b^6*d*e^3 - 128*a^5*c^4*d^3*e + 128*a^6*c^3*d*e^3 + 61*a 
^2*b^5*c^2*d^4 - 120*a^3*b^3*c^3*d^4 + a^2*c^2*d^4*(-(4*a*c - b^2)^5)^(1/2 
) + 6*a^2*b^7*d^2*e^2 - 13*a*b^7*c*d^4 - 4*a*b^8*d^3*e + 6*a^2*b^2*d^2*e^2 
*(-(4*a*c - b^2)^5)^(1/2) + 240*a^4*b^3*c^2*d^2*e^2 - 3*a*b^2*c*d^4*(-(4*a 
*c - b^2)^5)^(1/2) - 4*a*b^3*d^3*e*(-(4*a*c - b^2)^5)^(1/2) - 4*a^3*b*d*e^ 
3*(-(4*a*c - b^2)^5)^(1/2) + 48*a^2*b^6*c*d^3*e + 40*a^4*b^4*c*d*e^3 - 200 
*a^3*b^4*c^2*d^3*e - 66*a^3*b^5*c*d^2*e^2 + 320*a^4*b^2*c^3*d^3*e - 288*a^ 
5*b*c^3*d^2*e^2 - 128*a^5*b^2*c^2*d*e^3 - 6*a^3*c*d^2*e^2*(-(4*a*c - b^2)^ 
5)^(1/2) + 8*a^2*b*c*d^3*e*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^5*b^8 + 256*a 
^9*c^4 - 16*a^6*b^6*c + 96*a^7*b^4*c^2 - 256*a^8*b^2*c^3)))^(3/4)*(x*(-(b^ 
9*d^4 + a^4*b^5*e^4 + a^4*e^4*(-(4*a*c - b^2)^5)^(1/2) + b^4*d^4*(-(4*a*c 
- b^2)^5)^(1/2) + 80*a^4*b*c^4*d^4 - 8*a^5*b^3*c*e^4 + 16*a^6*b*c^2*e^4 - 
4*a^3*b^6*d*e^3 - 128*a^5*c^4*d^3*e + 128*a^6*c^3*d*e^3 + 61*a^2*b^5*c^2*d 
^4 - 120*a^3*b^3*c^3*d^4 + a^2*c^2*d^4*(-(4*a*c - b^2)^5)^(1/2) + 6*a^2*b^ 
7*d^2*e^2 - 13*a*b^7*c*d^4 - 4*a*b^8*d^3*e + 6*a^2*b^2*d^2*e^2*(-(4*a*c - 
b^2)^5)^(1/2) + 240*a^4*b^3*c^2*d^2*e^2 - 3*a*b^2*c*d^4*(-(4*a*c - b^2)^5) 
^(1/2) - 4*a*b^3*d^3*e*(-(4*a*c - b^2)^5)^(1/2) - 4*a^3*b*d*e^3*(-(4*a*c - 
 b^2)^5)^(1/2) + 48*a^2*b^6*c*d^3*e + 40*a^4*b^4*c*d*e^3 - 200*a^3*b^4*...
 

Reduce [F]

\[ \int \frac {d+e x^4}{x^2 \left (a+b x^4+c x^8\right )} \, dx=\int \frac {e \,x^{4}+d}{x^{2} \left (c \,x^{8}+b \,x^{4}+a \right )}d x \] Input:

int((e*x^4+d)/x^2/(c*x^8+b*x^4+a),x)
 

Output:

int((e*x^4+d)/x^2/(c*x^8+b*x^4+a),x)