\(\int x^{-1+n} (d+e x^n)^q (a+c x^{2 n})^p \, dx\) [74]

Optimal result
Mathematica [F]
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 167 \[ \int x^{-1+n} \left (d+e x^n\right )^q \left (a+c x^{2 n}\right )^p \, dx=\frac {\left (d+e x^n\right )^{1+q} \left (a+c x^{2 n}\right )^p \left (1-\frac {d+e x^n}{d-\frac {\sqrt {-a} e}{\sqrt {c}}}\right )^{-p} \left (1-\frac {d+e x^n}{d+\frac {\sqrt {-a} e}{\sqrt {c}}}\right )^{-p} \operatorname {AppellF1}\left (1+q,-p,-p,2+q,\frac {d+e x^n}{d-\frac {\sqrt {-a} e}{\sqrt {c}}},\frac {d+e x^n}{d+\frac {\sqrt {-a} e}{\sqrt {c}}}\right )}{e n (1+q)} \] Output:

(d+e*x^n)^(1+q)*(a+c*x^(2*n))^p*AppellF1(1+q,-p,-p,2+q,(d+e*x^n)/(d-(-a)^( 
1/2)*e/c^(1/2)),(d+e*x^n)/(d+(-a)^(1/2)*e/c^(1/2)))/e/n/(1+q)/((1-(d+e*x^n 
)/(d-(-a)^(1/2)*e/c^(1/2)))^p)/((1-(d+e*x^n)/(d+(-a)^(1/2)*e/c^(1/2)))^p)
 

Mathematica [F]

\[ \int x^{-1+n} \left (d+e x^n\right )^q \left (a+c x^{2 n}\right )^p \, dx=\int x^{-1+n} \left (d+e x^n\right )^q \left (a+c x^{2 n}\right )^p \, dx \] Input:

Integrate[x^(-1 + n)*(d + e*x^n)^q*(a + c*x^(2*n))^p,x]
 

Output:

Integrate[x^(-1 + n)*(d + e*x^n)^q*(a + c*x^(2*n))^p, x]
 

Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {1799, 514, 150}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^{n-1} \left (a+c x^{2 n}\right )^p \left (d+e x^n\right )^q \, dx\)

\(\Big \downarrow \) 1799

\(\displaystyle \frac {\int \left (e x^n+d\right )^q \left (c x^{2 n}+a\right )^pdx^n}{n}\)

\(\Big \downarrow \) 514

\(\displaystyle \frac {\left (a+c x^{2 n}\right )^p \left (1-\frac {d+e x^n}{d-\frac {\sqrt {-a} e}{\sqrt {c}}}\right )^{-p} \left (1-\frac {d+e x^n}{\frac {\sqrt {-a} e}{\sqrt {c}}+d}\right )^{-p} \int \left (e x^n+d\right )^q \left (1-\frac {e x^n+d}{d-\frac {\sqrt {-a} e}{\sqrt {c}}}\right )^p \left (1-\frac {e x^n+d}{d+\frac {\sqrt {-a} e}{\sqrt {c}}}\right )^pd\left (e x^n+d\right )}{e n}\)

\(\Big \downarrow \) 150

\(\displaystyle \frac {\left (a+c x^{2 n}\right )^p \left (d+e x^n\right )^{q+1} \left (1-\frac {d+e x^n}{d-\frac {\sqrt {-a} e}{\sqrt {c}}}\right )^{-p} \left (1-\frac {d+e x^n}{\frac {\sqrt {-a} e}{\sqrt {c}}+d}\right )^{-p} \operatorname {AppellF1}\left (q+1,-p,-p,q+2,\frac {e x^n+d}{d-\frac {\sqrt {-a} e}{\sqrt {c}}},\frac {e x^n+d}{d+\frac {\sqrt {-a} e}{\sqrt {c}}}\right )}{e n (q+1)}\)

Input:

Int[x^(-1 + n)*(d + e*x^n)^q*(a + c*x^(2*n))^p,x]
 

Output:

((d + e*x^n)^(1 + q)*(a + c*x^(2*n))^p*AppellF1[1 + q, -p, -p, 2 + q, (d + 
 e*x^n)/(d - (Sqrt[-a]*e)/Sqrt[c]), (d + e*x^n)/(d + (Sqrt[-a]*e)/Sqrt[c]) 
])/(e*n*(1 + q)*(1 - (d + e*x^n)/(d - (Sqrt[-a]*e)/Sqrt[c]))^p*(1 - (d + e 
*x^n)/(d + (Sqrt[-a]*e)/Sqrt[c]))^p)
 

Defintions of rubi rules used

rule 150
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_ 
] :> Simp[c^n*e^p*((b*x)^(m + 1)/(b*(m + 1)))*AppellF1[m + 1, -n, -p, m + 2 
, (-d)*(x/c), (-f)*(x/e)], x] /; FreeQ[{b, c, d, e, f, m, n, p}, x] &&  !In 
tegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])
 

rule 514
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[ 
{q = Rt[-a/b, 2]}, Simp[(a + b*x^2)^p/(d*(1 - (c + d*x)/(c - d*q))^p*(1 - ( 
c + d*x)/(c + d*q))^p)   Subst[Int[x^n*Simp[1 - x/(c + d*q), x]^p*Simp[1 - 
x/(c - d*q), x]^p, x], x, c + d*x], x]] /; FreeQ[{a, b, c, d, n, p}, x] && 
NeQ[b*c^2 + a*d^2, 0]
 

rule 1799
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q 
_.), x_Symbol] :> Simp[1/n   Subst[Int[(d + e*x)^q*(a + c*x^2)^p, x], x, x^ 
n], x] /; FreeQ[{a, c, d, e, m, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[Simplif 
y[m - n + 1], 0]
 
Maple [F]

\[\int x^{-1+n} \left (d +e \,x^{n}\right )^{q} \left (a +c \,x^{2 n}\right )^{p}d x\]

Input:

int(x^(-1+n)*(d+e*x^n)^q*(a+c*x^(2*n))^p,x)
 

Output:

int(x^(-1+n)*(d+e*x^n)^q*(a+c*x^(2*n))^p,x)
 

Fricas [F]

\[ \int x^{-1+n} \left (d+e x^n\right )^q \left (a+c x^{2 n}\right )^p \, dx=\int { {\left (c x^{2 \, n} + a\right )}^{p} {\left (e x^{n} + d\right )}^{q} x^{n - 1} \,d x } \] Input:

integrate(x^(-1+n)*(d+e*x^n)^q*(a+c*x^(2*n))^p,x, algorithm="fricas")
 

Output:

integral((c*x^(2*n) + a)^p*(e*x^n + d)^q*x^(n - 1), x)
 

Sympy [F(-1)]

Timed out. \[ \int x^{-1+n} \left (d+e x^n\right )^q \left (a+c x^{2 n}\right )^p \, dx=\text {Timed out} \] Input:

integrate(x**(-1+n)*(d+e*x**n)**q*(a+c*x**(2*n))**p,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int x^{-1+n} \left (d+e x^n\right )^q \left (a+c x^{2 n}\right )^p \, dx=\int { {\left (c x^{2 \, n} + a\right )}^{p} {\left (e x^{n} + d\right )}^{q} x^{n - 1} \,d x } \] Input:

integrate(x^(-1+n)*(d+e*x^n)^q*(a+c*x^(2*n))^p,x, algorithm="maxima")
 

Output:

integrate((c*x^(2*n) + a)^p*(e*x^n + d)^q*x^(n - 1), x)
 

Giac [F]

\[ \int x^{-1+n} \left (d+e x^n\right )^q \left (a+c x^{2 n}\right )^p \, dx=\int { {\left (c x^{2 \, n} + a\right )}^{p} {\left (e x^{n} + d\right )}^{q} x^{n - 1} \,d x } \] Input:

integrate(x^(-1+n)*(d+e*x^n)^q*(a+c*x^(2*n))^p,x, algorithm="giac")
 

Output:

integrate((c*x^(2*n) + a)^p*(e*x^n + d)^q*x^(n - 1), x)
 

Mupad [F(-1)]

Timed out. \[ \int x^{-1+n} \left (d+e x^n\right )^q \left (a+c x^{2 n}\right )^p \, dx=\int x^{n-1}\,{\left (a+c\,x^{2\,n}\right )}^p\,{\left (d+e\,x^n\right )}^q \,d x \] Input:

int(x^(n - 1)*(a + c*x^(2*n))^p*(d + e*x^n)^q,x)
 

Output:

int(x^(n - 1)*(a + c*x^(2*n))^p*(d + e*x^n)^q, x)
 

Reduce [F]

\[ \int x^{-1+n} \left (d+e x^n\right )^q \left (a+c x^{2 n}\right )^p \, dx=\text {too large to display} \] Input:

int(x^(-1+n)*(d+e*x^n)^q*(a+c*x^(2*n))^p,x)
 

Output:

(x**n*(x**n*e + d)**q*(x**(2*n)*c + a)**p*c*d + (x**n*e + d)**q*(x**(2*n)* 
c + a)**p*a*e - 4*int((x**(3*n)*(x**n*e + d)**q*(x**(2*n)*c + a)**p)/(2*x* 
*(3*n)*c*e*p*x + x**(3*n)*c*e*q*x + x**(3*n)*c*e*x + 2*x**(2*n)*c*d*p*x + 
x**(2*n)*c*d*q*x + x**(2*n)*c*d*x + 2*x**n*a*e*p*x + x**n*a*e*q*x + x**n*a 
*e*x + 2*a*d*p*x + a*d*q*x + a*d*x),x)*a*c*e**2*n*p**2 - 4*int((x**(3*n)*( 
x**n*e + d)**q*(x**(2*n)*c + a)**p)/(2*x**(3*n)*c*e*p*x + x**(3*n)*c*e*q*x 
 + x**(3*n)*c*e*x + 2*x**(2*n)*c*d*p*x + x**(2*n)*c*d*q*x + x**(2*n)*c*d*x 
 + 2*x**n*a*e*p*x + x**n*a*e*q*x + x**n*a*e*x + 2*a*d*p*x + a*d*q*x + a*d* 
x),x)*a*c*e**2*n*p*q - 2*int((x**(3*n)*(x**n*e + d)**q*(x**(2*n)*c + a)**p 
)/(2*x**(3*n)*c*e*p*x + x**(3*n)*c*e*q*x + x**(3*n)*c*e*x + 2*x**(2*n)*c*d 
*p*x + x**(2*n)*c*d*q*x + x**(2*n)*c*d*x + 2*x**n*a*e*p*x + x**n*a*e*q*x + 
 x**n*a*e*x + 2*a*d*p*x + a*d*q*x + a*d*x),x)*a*c*e**2*n*p - int((x**(3*n) 
*(x**n*e + d)**q*(x**(2*n)*c + a)**p)/(2*x**(3*n)*c*e*p*x + x**(3*n)*c*e*q 
*x + x**(3*n)*c*e*x + 2*x**(2*n)*c*d*p*x + x**(2*n)*c*d*q*x + x**(2*n)*c*d 
*x + 2*x**n*a*e*p*x + x**n*a*e*q*x + x**n*a*e*x + 2*a*d*p*x + a*d*q*x + a* 
d*x),x)*a*c*e**2*n*q**2 - int((x**(3*n)*(x**n*e + d)**q*(x**(2*n)*c + a)** 
p)/(2*x**(3*n)*c*e*p*x + x**(3*n)*c*e*q*x + x**(3*n)*c*e*x + 2*x**(2*n)*c* 
d*p*x + x**(2*n)*c*d*q*x + x**(2*n)*c*d*x + 2*x**n*a*e*p*x + x**n*a*e*q*x 
+ x**n*a*e*x + 2*a*d*p*x + a*d*q*x + a*d*x),x)*a*c*e**2*n*q + 2*int((x**(3 
*n)*(x**n*e + d)**q*(x**(2*n)*c + a)**p)/(2*x**(3*n)*c*e*p*x + x**(3*n)...