\(\int \frac {x^7}{a x+b x^3+c x^5} \, dx\) [25]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 203 \[ \int \frac {x^7}{a x+b x^3+c x^5} \, dx=-\frac {b x}{c^2}+\frac {x^3}{3 c}+\frac {\left (b^2-a c-\frac {b \left (b^2-3 a c\right )}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{5/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (b^2-a c+\frac {b \left (b^2-3 a c\right )}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{5/2} \sqrt {b+\sqrt {b^2-4 a c}}} \] Output:

-b*x/c^2+1/3*x^3/c+1/2*(b^2-a*c-b*(-3*a*c+b^2)/(-4*a*c+b^2)^(1/2))*arctan( 
2^(1/2)*c^(1/2)*x/(b-(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)/c^(5/2)/(b-(-4*a*c 
+b^2)^(1/2))^(1/2)+1/2*(b^2-a*c+b*(-3*a*c+b^2)/(-4*a*c+b^2)^(1/2))*arctan( 
2^(1/2)*c^(1/2)*x/(b+(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)/c^(5/2)/(b+(-4*a*c 
+b^2)^(1/2))^(1/2)
 

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 250, normalized size of antiderivative = 1.23 \[ \int \frac {x^7}{a x+b x^3+c x^5} \, dx=-\frac {b x}{c^2}+\frac {x^3}{3 c}+\frac {\left (-b^3+3 a b c+b^2 \sqrt {b^2-4 a c}-a c \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{5/2} \sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (b^3-3 a b c+b^2 \sqrt {b^2-4 a c}-a c \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{5/2} \sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}} \] Input:

Integrate[x^7/(a*x + b*x^3 + c*x^5),x]
 

Output:

-((b*x)/c^2) + x^3/(3*c) + ((-b^3 + 3*a*b*c + b^2*Sqrt[b^2 - 4*a*c] - a*c* 
Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]] 
)/(Sqrt[2]*c^(5/2)*Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((b^3 
- 3*a*b*c + b^2*Sqrt[b^2 - 4*a*c] - a*c*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2] 
*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(5/2)*Sqrt[b^2 - 4*a* 
c]*Sqrt[b + Sqrt[b^2 - 4*a*c]])
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.05, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {9, 1442, 27, 1602, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^7}{a x+b x^3+c x^5} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {x^6}{a+b x^2+c x^4}dx\)

\(\Big \downarrow \) 1442

\(\displaystyle \frac {x^3}{3 c}-\frac {\int \frac {3 x^2 \left (b x^2+a\right )}{c x^4+b x^2+a}dx}{3 c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {x^3}{3 c}-\frac {\int \frac {x^2 \left (b x^2+a\right )}{c x^4+b x^2+a}dx}{c}\)

\(\Big \downarrow \) 1602

\(\displaystyle \frac {x^3}{3 c}-\frac {\frac {b x}{c}-\frac {\int \frac {\left (b^2-a c\right ) x^2+a b}{c x^4+b x^2+a}dx}{c}}{c}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {x^3}{3 c}-\frac {\frac {b x}{c}-\frac {\frac {1}{2} \left (-\frac {b \left (b^2-3 a c\right )}{\sqrt {b^2-4 a c}}-a c+b^2\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} \left (\frac {b \left (b^2-3 a c\right )}{\sqrt {b^2-4 a c}}-a c+b^2\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{c}}{c}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {x^3}{3 c}-\frac {\frac {b x}{c}-\frac {\frac {\left (-\frac {b \left (b^2-3 a c\right )}{\sqrt {b^2-4 a c}}-a c+b^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (\frac {b \left (b^2-3 a c\right )}{\sqrt {b^2-4 a c}}-a c+b^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}}{c}}{c}\)

Input:

Int[x^7/(a*x + b*x^3 + c*x^5),x]
 

Output:

x^3/(3*c) - ((b*x)/c - (((b^2 - a*c - (b*(b^2 - 3*a*c))/Sqrt[b^2 - 4*a*c]) 
*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c] 
*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((b^2 - a*c + (b*(b^2 - 3*a*c))/Sqrt[b^2 - 
 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2] 
*Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/c)/c
 

Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1442
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[d^3*(d*x)^(m - 3)*((a + b*x^2 + c*x^4)^(p + 1)/(c*(m + 4*p + 1))), 
x] - Simp[d^4/(c*(m + 4*p + 1))   Int[(d*x)^(m - 4)*Simp[a*(m - 3) + b*(m + 
 2*p - 1)*x^2, x]*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x 
] && NeQ[b^2 - 4*a*c, 0] && GtQ[m, 3] && NeQ[m + 4*p + 1, 0] && IntegerQ[2* 
p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1602
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*( 
x_)^4)^(p_), x_Symbol] :> Simp[e*f*(f*x)^(m - 1)*((a + b*x^2 + c*x^4)^(p + 
1)/(c*(m + 4*p + 3))), x] - Simp[f^2/(c*(m + 4*p + 3))   Int[(f*x)^(m - 2)* 
(a + b*x^2 + c*x^4)^p*Simp[a*e*(m - 1) + (b*e*(m + 2*p + 1) - c*d*(m + 4*p 
+ 3))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && NeQ[b^2 - 4*a*c 
, 0] && GtQ[m, 1] && NeQ[m + 4*p + 3, 0] && IntegerQ[2*p] && (IntegerQ[p] | 
| IntegerQ[m])
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.12 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.36

method result size
risch \(\frac {x^{3}}{3 c}-\frac {b x}{c^{2}}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (\left (-a c +b^{2}\right ) \textit {\_R}^{2}+a b \right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} c +\textit {\_R} b}}{2 c^{2}}\) \(73\)
default \(-\frac {-\frac {1}{3} c \,x^{3}+b x}{c^{2}}+\frac {-\frac {\left (-a c \sqrt {-4 a c +b^{2}}+b^{2} \sqrt {-4 a c +b^{2}}+3 a b c -b^{3}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}+\frac {\left (-a c \sqrt {-4 a c +b^{2}}+b^{2} \sqrt {-4 a c +b^{2}}-3 a b c +b^{3}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}}{c}\) \(217\)

Input:

int(x^7/(c*x^5+b*x^3+a*x),x,method=_RETURNVERBOSE)
 

Output:

1/3*x^3/c-b*x/c^2+1/2/c^2*sum(((-a*c+b^2)*_R^2+a*b)/(2*_R^3*c+_R*b)*ln(x-_ 
R),_R=RootOf(_Z^4*c+_Z^2*b+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1564 vs. \(2 (167) = 334\).

Time = 0.15 (sec) , antiderivative size = 1564, normalized size of antiderivative = 7.70 \[ \int \frac {x^7}{a x+b x^3+c x^5} \, dx=\text {Too large to display} \] Input:

integrate(x^7/(c*x^5+b*x^3+a*x),x, algorithm="fricas")
 

Output:

1/6*(2*c*x^3 - 3*sqrt(1/2)*c^2*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^2 
*c^5 - 4*a*c^6)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a 
^4*c^4)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5 - 4*a*c^6))*log(2*(a^2*b^4 - 3*a^ 
3*b^2*c + a^4*c^2)*x + sqrt(1/2)*(b^7 - 7*a*b^5*c + 13*a^2*b^3*c^2 - 4*a^3 
*b*c^3 - (b^4*c^5 - 6*a*b^2*c^6 + 8*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^ 
2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^2*c^10 - 4*a*c^11)))*sqrt(-(b^5 - 
5*a*b^3*c + 5*a^2*b*c^2 + (b^2*c^5 - 4*a*c^6)*sqrt((b^8 - 6*a*b^6*c + 11*a 
^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5 - 4 
*a*c^6))) + 3*sqrt(1/2)*c^2*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^2*c^ 
5 - 4*a*c^6)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4* 
c^4)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5 - 4*a*c^6))*log(2*(a^2*b^4 - 3*a^3*b 
^2*c + a^4*c^2)*x - sqrt(1/2)*(b^7 - 7*a*b^5*c + 13*a^2*b^3*c^2 - 4*a^3*b* 
c^3 - (b^4*c^5 - 6*a*b^2*c^6 + 8*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b 
^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^2*c^10 - 4*a*c^11)))*sqrt(-(b^5 - 5*a 
*b^3*c + 5*a^2*b*c^2 + (b^2*c^5 - 4*a*c^6)*sqrt((b^8 - 6*a*b^6*c + 11*a^2* 
b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5 - 4*a* 
c^6))) - 3*sqrt(1/2)*c^2*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^2*c^5 - 
 4*a*c^6)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4 
)/(b^2*c^10 - 4*a*c^11)))/(b^2*c^5 - 4*a*c^6))*log(2*(a^2*b^4 - 3*a^3*b^2* 
c + a^4*c^2)*x + sqrt(1/2)*(b^7 - 7*a*b^5*c + 13*a^2*b^3*c^2 - 4*a^3*b*...
 

Sympy [A] (verification not implemented)

Time = 2.92 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.96 \[ \int \frac {x^7}{a x+b x^3+c x^5} \, dx=- \frac {b x}{c^{2}} + \operatorname {RootSum} {\left (t^{4} \cdot \left (256 a^{2} c^{7} - 128 a b^{2} c^{6} + 16 b^{4} c^{5}\right ) + t^{2} \left (- 80 a^{3} b c^{3} + 100 a^{2} b^{3} c^{2} - 36 a b^{5} c + 4 b^{7}\right ) + a^{5}, \left ( t \mapsto t \log {\left (x + \frac {- 64 t^{3} a^{2} c^{7} + 48 t^{3} a b^{2} c^{6} - 8 t^{3} b^{4} c^{5} + 14 t a^{3} b c^{3} - 28 t a^{2} b^{3} c^{2} + 14 t a b^{5} c - 2 t b^{7}}{a^{4} c^{2} - 3 a^{3} b^{2} c + a^{2} b^{4}} \right )} \right )\right )} + \frac {x^{3}}{3 c} \] Input:

integrate(x**7/(c*x**5+b*x**3+a*x),x)
 

Output:

-b*x/c**2 + RootSum(_t**4*(256*a**2*c**7 - 128*a*b**2*c**6 + 16*b**4*c**5) 
 + _t**2*(-80*a**3*b*c**3 + 100*a**2*b**3*c**2 - 36*a*b**5*c + 4*b**7) + a 
**5, Lambda(_t, _t*log(x + (-64*_t**3*a**2*c**7 + 48*_t**3*a*b**2*c**6 - 8 
*_t**3*b**4*c**5 + 14*_t*a**3*b*c**3 - 28*_t*a**2*b**3*c**2 + 14*_t*a*b**5 
*c - 2*_t*b**7)/(a**4*c**2 - 3*a**3*b**2*c + a**2*b**4)))) + x**3/(3*c)
 

Maxima [F]

\[ \int \frac {x^7}{a x+b x^3+c x^5} \, dx=\int { \frac {x^{7}}{c x^{5} + b x^{3} + a x} \,d x } \] Input:

integrate(x^7/(c*x^5+b*x^3+a*x),x, algorithm="maxima")
 

Output:

1/3*(c*x^3 - 3*b*x)/c^2 - integrate(-((b^2 - a*c)*x^2 + a*b)/(c*x^4 + b*x^ 
2 + a), x)/c^2
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2457 vs. \(2 (167) = 334\).

Time = 0.42 (sec) , antiderivative size = 2457, normalized size of antiderivative = 12.10 \[ \int \frac {x^7}{a x+b x^3+c x^5} \, dx=\text {Too large to display} \] Input:

integrate(x^7/(c*x^5+b*x^3+a*x),x, algorithm="giac")
 

Output:

1/8*(2*b^6*c^4 - 14*a*b^4*c^5 + 24*a^2*b^2*c^6 - sqrt(2)*sqrt(b^2 - 4*a*c) 
*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^6*c^2 + 7*sqrt(2)*sqrt(b^2 - 4*a*c)*sqr 
t(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^3 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt( 
b*c + sqrt(b^2 - 4*a*c)*c)*b^5*c^3 - 12*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c 
 + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^4 - 6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c 
 + sqrt(b^2 - 4*a*c)*c)*a*b^3*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + s 
qrt(b^2 - 4*a*c)*c)*b^4*c^4 + 3*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt( 
b^2 - 4*a*c)*c)*a*b^2*c^5 - 2*(b^2 - 4*a*c)*b^4*c^4 + 6*(b^2 - 4*a*c)*a*b^ 
2*c^5 - (2*b^6*c^2 - 18*a*b^4*c^3 + 48*a^2*b^2*c^4 - 32*a^3*c^5 - sqrt(2)* 
sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^6 + 9*sqrt(2)*sqrt(b^2 
 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c + 2*sqrt(2)*sqrt(b^2 - 4 
*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5*c - 24*sqrt(2)*sqrt(b^2 - 4*a*c) 
*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^2 - 10*sqrt(2)*sqrt(b^2 - 4*a*c 
)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sq 
rt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c^2 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt( 
b*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^3 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c 
+ sqrt(b^2 - 4*a*c)*c)*a^2*b*c^3 + 5*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
sqrt(b^2 - 4*a*c)*c)*a*b^2*c^3 - 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sq 
rt(b^2 - 4*a*c)*c)*a^2*c^4 - 2*(b^2 - 4*a*c)*b^4*c^2 + 10*(b^2 - 4*a*c)*a* 
b^2*c^3 - 8*(b^2 - 4*a*c)*a^2*c^4)*c^2 + 2*(sqrt(2)*sqrt(b*c + sqrt(b^2...
 

Mupad [B] (verification not implemented)

Time = 12.58 (sec) , antiderivative size = 4127, normalized size of antiderivative = 20.33 \[ \int \frac {x^7}{a x+b x^3+c x^5} \, dx=\text {Too large to display} \] Input:

int(x^7/(a*x + b*x^3 + c*x^5),x)
                                                                                    
                                                                                    
 

Output:

x^3/(3*c) - atan(((((4*a*b^3*c^3 - 16*a^2*b*c^4)/c^3 - (2*x*(4*b^3*c^5 - 1 
6*a*b*c^6)*(-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2) - 20*a^3*b*c^3 + 25*a^2*b 
^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c 
 - b^2)^3)^(1/2))/(8*(16*a^2*c^7 + b^4*c^5 - 8*a*b^2*c^6)))^(1/2))/c^3)*(- 
(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2 + a^2* 
c^2*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1 
/2))/(8*(16*a^2*c^7 + b^4*c^5 - 8*a*b^2*c^6)))^(1/2) - (2*x*(b^6 - 2*a^3*c 
^3 + 9*a^2*b^2*c^2 - 6*a*b^4*c))/c^3)*(-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2 
) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) - 9*a 
*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^7 + b^4*c^5 - 8* 
a*b^2*c^6)))^(1/2)*1i - (((4*a*b^3*c^3 - 16*a^2*b*c^4)/c^3 + (2*x*(4*b^3*c 
^5 - 16*a*b*c^6)*(-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2) - 20*a^3*b*c^3 + 25 
*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(- 
(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^7 + b^4*c^5 - 8*a*b^2*c^6)))^(1/2))/c 
^3)*(-(b^7 + b^4*(-(4*a*c - b^2)^3)^(1/2) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2 
+ a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2) 
^3)^(1/2))/(8*(16*a^2*c^7 + b^4*c^5 - 8*a*b^2*c^6)))^(1/2) + (2*x*(b^6 - 2 
*a^3*c^3 + 9*a^2*b^2*c^2 - 6*a*b^4*c))/c^3)*(-(b^7 + b^4*(-(4*a*c - b^2)^3 
)^(1/2) - 20*a^3*b*c^3 + 25*a^2*b^3*c^2 + a^2*c^2*(-(4*a*c - b^2)^3)^(1/2) 
 - 9*a*b^5*c - 3*a*b^2*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^7 + b^4...
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 761, normalized size of antiderivative = 3.75 \[ \int \frac {x^7}{a x+b x^3+c x^5} \, dx =\text {Too large to display} \] Input:

int(x^7/(c*x^5+b*x^3+a*x),x)
 

Output:

(12*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) 
- 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*c**2 - 6*sqrt(a)*sqrt(2*sqrt 
(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*s 
qrt(c)*sqrt(a) + b))*b**2*c - 18*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan( 
(sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a 
*b*c + 6*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) 
- b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b**3 - 12*sqrt(a)*sqrt(2* 
sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt 
(2*sqrt(c)*sqrt(a) + b))*a*c**2 + 6*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*at 
an((sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b) 
)*b**2*c + 18*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqr 
t(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b*c - 6*sqrt(c)*sq 
rt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x) 
/sqrt(2*sqrt(c)*sqrt(a) + b))*b**3 - 6*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) - b) 
*log( - sqrt(2*sqrt(c)*sqrt(a) - b)*x + sqrt(a) + sqrt(c)*x**2)*a*c**2 + 3 
*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) - b)*log( - sqrt(2*sqrt(c)*sqrt(a) - b)*x 
+ sqrt(a) + sqrt(c)*x**2)*b**2*c + 6*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) - b)*l 
og(sqrt(2*sqrt(c)*sqrt(a) - b)*x + sqrt(a) + sqrt(c)*x**2)*a*c**2 - 3*sqrt 
(a)*sqrt(2*sqrt(c)*sqrt(a) - b)*log(sqrt(2*sqrt(c)*sqrt(a) - b)*x + sqrt(a 
) + sqrt(c)*x**2)*b**2*c - 9*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) - b)*log( -...