\(\int \frac {1}{x (a x+b x^3+c x^5)} \, dx\) [33]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 174 \[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )} \, dx=-\frac {1}{a x}-\frac {\sqrt {c} \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a \sqrt {b+\sqrt {b^2-4 a c}}} \] Output:

-1/a/x-1/2*c^(1/2)*(1+b/(-4*a*c+b^2)^(1/2))*arctan(2^(1/2)*c^(1/2)*x/(b-(- 
4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)/a/(b-(-4*a*c+b^2)^(1/2))^(1/2)-1/2*c^(1/2 
)*(1-b/(-4*a*c+b^2)^(1/2))*arctan(2^(1/2)*c^(1/2)*x/(b+(-4*a*c+b^2)^(1/2)) 
^(1/2))*2^(1/2)/a/(b+(-4*a*c+b^2)^(1/2))^(1/2)
 

Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.10 \[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )} \, dx=-\frac {\frac {2}{x}+\frac {\sqrt {2} \sqrt {c} \left (b+\sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \sqrt {c} \left (-b+\sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}}}{2 a} \] Input:

Integrate[1/(x*(a*x + b*x^3 + c*x^5)),x]
 

Output:

-1/2*(2/x + (Sqrt[2]*Sqrt[c]*(b + Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[ 
c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 
 4*a*c]]) + (Sqrt[2]*Sqrt[c]*(-b + Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt 
[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 
- 4*a*c]]))/a
 

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 172, normalized size of antiderivative = 0.99, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {9, 1443, 25, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \left (a x+b x^3+c x^5\right )} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {1}{x^2 \left (a+b x^2+c x^4\right )}dx\)

\(\Big \downarrow \) 1443

\(\displaystyle \frac {\int -\frac {c x^2+b}{c x^4+b x^2+a}dx}{a}-\frac {1}{a x}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {c x^2+b}{c x^4+b x^2+a}dx}{a}-\frac {1}{a x}\)

\(\Big \downarrow \) 1480

\(\displaystyle -\frac {\frac {1}{2} c \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} c \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{a}-\frac {1}{a x}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {\frac {\sqrt {c} \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {\sqrt {b^2-4 a c}+b}}}{a}-\frac {1}{a x}\)

Input:

Int[1/(x*(a*x + b*x^3 + c*x^5)),x]
 

Output:

-(1/(a*x)) - ((Sqrt[c]*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x 
)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (S 
qrt[c]*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[ 
b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/a
 

Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1443
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[(d*x)^(m + 1)*((a + b*x^2 + c*x^4)^(p + 1)/(a*d*(m + 1))), x] - Sim 
p[1/(a*d^2*(m + 1))   Int[(d*x)^(m + 2)*(b*(m + 2*p + 3) + c*(m + 4*p + 5)* 
x^2)*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 
- 4*a*c, 0] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 
Maple [A] (verified)

Time = 0.11 (sec) , antiderivative size = 159, normalized size of antiderivative = 0.91

method result size
default \(\frac {4 c \left (-\frac {\left (-\sqrt {-4 a c +b^{2}}-b \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}+\frac {\left (b -\sqrt {-4 a c +b^{2}}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{a}-\frac {1}{a x}\) \(159\)
risch \(-\frac {1}{a x}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (16 c^{2} a^{5}-8 a^{4} b^{2} c +a^{3} b^{4}\right ) \textit {\_Z}^{4}+\left (12 a^{2} b \,c^{2}-7 a \,b^{3} c +b^{5}\right ) \textit {\_Z}^{2}+c^{3}\right )}{\sum }\textit {\_R} \ln \left (\left (\left (40 c^{2} a^{5}-22 a^{4} b^{2} c +3 a^{3} b^{4}\right ) \textit {\_R}^{4}+\left (25 a^{2} b \,c^{2}-14 a \,b^{3} c +2 b^{5}\right ) \textit {\_R}^{2}+2 c^{3}\right ) x +\left (4 a^{4} c^{2}-5 a^{3} b^{2} c +b^{4} a^{2}\right ) \textit {\_R}^{3}\right )\right )}{2}\) \(170\)

Input:

int(1/x/(c*x^5+b*x^3+a*x),x,method=_RETURNVERBOSE)
 

Output:

4/a*c*(-1/8*(-(-4*a*c+b^2)^(1/2)-b)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a* 
c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/ 
2))+1/8*(b-(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2) 
^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)))-1/a 
/x
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1116 vs. \(2 (137) = 274\).

Time = 0.11 (sec) , antiderivative size = 1116, normalized size of antiderivative = 6.41 \[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )} \, dx =\text {Too large to display} \] Input:

integrate(1/x/(c*x^5+b*x^3+a*x),x, algorithm="fricas")
 

Output:

-1/2*(sqrt(1/2)*a*x*sqrt(-(b^3 - 3*a*b*c + (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 
 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log(-2*(b 
^2*c^2 - a*c^3)*x + sqrt(1/2)*(b^5 - 5*a*b^3*c + 4*a^2*b*c^2 - (a^3*b^4 - 
6*a^4*b^2*c + 8*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7 
*c)))*sqrt(-(b^3 - 3*a*b*c + (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b^2*c + a 
^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))) - sqrt(1/2)*a*x*sqrt(- 
(b^3 - 3*a*b*c + (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6 
*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log(-2*(b^2*c^2 - a*c^3)*x - sqrt(1 
/2)*(b^5 - 5*a*b^3*c + 4*a^2*b*c^2 - (a^3*b^4 - 6*a^4*b^2*c + 8*a^5*c^2)*s 
qrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))*sqrt(-(b^3 - 3*a*b*c 
 + (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c 
)))/(a^3*b^2 - 4*a^4*c))) + sqrt(1/2)*a*x*sqrt(-(b^3 - 3*a*b*c - (a^3*b^2 
- 4*a^4*c)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 
 - 4*a^4*c))*log(-2*(b^2*c^2 - a*c^3)*x + sqrt(1/2)*(b^5 - 5*a*b^3*c + 4*a 
^2*b*c^2 + (a^3*b^4 - 6*a^4*b^2*c + 8*a^5*c^2)*sqrt((b^4 - 2*a*b^2*c + a^2 
*c^2)/(a^6*b^2 - 4*a^7*c)))*sqrt(-(b^3 - 3*a*b*c - (a^3*b^2 - 4*a^4*c)*sqr 
t((b^4 - 2*a*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))) 
- sqrt(1/2)*a*x*sqrt(-(b^3 - 3*a*b*c - (a^3*b^2 - 4*a^4*c)*sqrt((b^4 - 2*a 
*b^2*c + a^2*c^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log(-2*(b^2*c 
^2 - a*c^3)*x - sqrt(1/2)*(b^5 - 5*a*b^3*c + 4*a^2*b*c^2 + (a^3*b^4 - 6...
 

Sympy [A] (verification not implemented)

Time = 1.74 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.85 \[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )} \, dx=\operatorname {RootSum} {\left (t^{4} \cdot \left (256 a^{5} c^{2} - 128 a^{4} b^{2} c + 16 a^{3} b^{4}\right ) + t^{2} \cdot \left (48 a^{2} b c^{2} - 28 a b^{3} c + 4 b^{5}\right ) + c^{3}, \left ( t \mapsto t \log {\left (x + \frac {- 64 t^{3} a^{5} c^{2} + 48 t^{3} a^{4} b^{2} c - 8 t^{3} a^{3} b^{4} - 10 t a^{2} b c^{2} + 10 t a b^{3} c - 2 t b^{5}}{a c^{3} - b^{2} c^{2}} \right )} \right )\right )} - \frac {1}{a x} \] Input:

integrate(1/x/(c*x**5+b*x**3+a*x),x)
 

Output:

RootSum(_t**4*(256*a**5*c**2 - 128*a**4*b**2*c + 16*a**3*b**4) + _t**2*(48 
*a**2*b*c**2 - 28*a*b**3*c + 4*b**5) + c**3, Lambda(_t, _t*log(x + (-64*_t 
**3*a**5*c**2 + 48*_t**3*a**4*b**2*c - 8*_t**3*a**3*b**4 - 10*_t*a**2*b*c* 
*2 + 10*_t*a*b**3*c - 2*_t*b**5)/(a*c**3 - b**2*c**2)))) - 1/(a*x)
 

Maxima [F]

\[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )} \, dx=\int { \frac {1}{{\left (c x^{5} + b x^{3} + a x\right )} x} \,d x } \] Input:

integrate(1/x/(c*x^5+b*x^3+a*x),x, algorithm="maxima")
 

Output:

-integrate((c*x^2 + b)/(c*x^4 + b*x^2 + a), x)/a - 1/(a*x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1839 vs. \(2 (137) = 274\).

Time = 0.43 (sec) , antiderivative size = 1839, normalized size of antiderivative = 10.57 \[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )} \, dx=\text {Too large to display} \] Input:

integrate(1/x/(c*x^5+b*x^3+a*x),x, algorithm="giac")
 

Output:

-1/8*(2*a^2*b^4*c^2 - 8*a^3*b^2*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
 sqrt(b^2 - 4*a*c)*c)*a^2*b^4 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqr 
t(b^2 - 4*a*c)*c)*a^3*b^2*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt( 
b^2 - 4*a*c)*c)*a^2*b^3*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 
- 4*a*c)*c)*a^2*b^2*c^2 - 2*(b^2 - 4*a*c)*a^2*b^2*c^2 + (2*b^4*c^2 - 16*a* 
b^2*c^3 + 32*a^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a 
*c)*c)*b^4 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a 
*b^2*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c 
 - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^2 - 
8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^2 - sqrt 
(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c^2 + 4*sqrt(2)* 
sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*c^3 - 2*(b^2 - 4*a*c)* 
b^2*c^2 + 8*(b^2 - 4*a*c)*a*c^3)*a^2 + 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4* 
a*c)*c)*a*b^5 - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c - 2*sq 
rt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c - 2*a*b^5*c + 16*sqrt(2)*sqr 
t(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b*c^2 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4 
*a*c)*c)*a^2*b^2*c^2 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c^2 + 
 16*a^2*b^3*c^2 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^3 - 32 
*a^3*b*c^3 + 2*(b^2 - 4*a*c)*a*b^3*c - 8*(b^2 - 4*a*c)*a^2*b*c^2)*abs(a))* 
arctan(2*sqrt(1/2)*x/sqrt((a*b + sqrt(a^2*b^2 - 4*a^3*c))/(a*c)))/((a^3...
 

Mupad [B] (verification not implemented)

Time = 12.56 (sec) , antiderivative size = 2997, normalized size of antiderivative = 17.22 \[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )} \, dx=\text {Too large to display} \] Input:

int(1/(x*(a*x + b*x^3 + c*x^5)),x)
 

Output:

- atan(((x*(4*a^4*c^4 - 2*a^3*b^2*c^3) + (-(b^5 + b^2*(-(4*a*c - b^2)^3)^( 
1/2) + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^3*b^ 
4 + 16*a^5*c^2 - 8*a^4*b^2*c)))^(1/2)*(4*a^4*b^3*c^2 - 16*a^5*b*c^3 + x*(3 
2*a^6*b*c^3 - 8*a^5*b^3*c^2)*(-(b^5 + b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^ 
2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^3*b^4 + 16*a^5*c 
^2 - 8*a^4*b^2*c)))^(1/2)))*(-(b^5 + b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2 
*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^3*b^4 + 16*a^5*c^ 
2 - 8*a^4*b^2*c)))^(1/2)*1i + (x*(4*a^4*c^4 - 2*a^3*b^2*c^3) + (-(b^5 + b^ 
2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2 
)^3)^(1/2))/(8*(a^3*b^4 + 16*a^5*c^2 - 8*a^4*b^2*c)))^(1/2)*(16*a^5*b*c^3 
- 4*a^4*b^3*c^2 + x*(32*a^6*b*c^3 - 8*a^5*b^3*c^2)*(-(b^5 + b^2*(-(4*a*c - 
 b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/ 
(8*(a^3*b^4 + 16*a^5*c^2 - 8*a^4*b^2*c)))^(1/2)))*(-(b^5 + b^2*(-(4*a*c - 
b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/( 
8*(a^3*b^4 + 16*a^5*c^2 - 8*a^4*b^2*c)))^(1/2)*1i)/((x*(4*a^4*c^4 - 2*a^3* 
b^2*c^3) + (-(b^5 + b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3* 
c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(a^3*b^4 + 16*a^5*c^2 - 8*a^4*b^2*c)) 
)^(1/2)*(16*a^5*b*c^3 - 4*a^4*b^3*c^2 + x*(32*a^6*b*c^3 - 8*a^5*b^3*c^2)*( 
-(b^5 + b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4 
*a*c - b^2)^3)^(1/2))/(8*(a^3*b^4 + 16*a^5*c^2 - 8*a^4*b^2*c)))^(1/2)))...
 

Reduce [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 560, normalized size of antiderivative = 3.22 \[ \int \frac {1}{x \left (a x+b x^3+c x^5\right )} \, dx=\frac {4 \sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}-b}-2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}+b}}\right ) a c x -2 \sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}-b}-2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}+b}}\right ) b^{2} x +2 \sqrt {c}\, \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}-b}-2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}+b}}\right ) a b x -4 \sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}-b}+2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}+b}}\right ) a c x +2 \sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}-b}+2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}+b}}\right ) b^{2} x -2 \sqrt {c}\, \sqrt {2 \sqrt {c}\, \sqrt {a}+b}\, \mathit {atan} \left (\frac {\sqrt {2 \sqrt {c}\, \sqrt {a}-b}+2 \sqrt {c}\, x}{\sqrt {2 \sqrt {c}\, \sqrt {a}+b}}\right ) a b x -2 \sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathrm {log}\left (-\sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) a c x +\sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathrm {log}\left (-\sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) b^{2} x +2 \sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathrm {log}\left (\sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) a c x -\sqrt {a}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathrm {log}\left (\sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) b^{2} x +\sqrt {c}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathrm {log}\left (-\sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) a b x -\sqrt {c}\, \sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, \mathrm {log}\left (\sqrt {2 \sqrt {c}\, \sqrt {a}-b}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) a b x -16 a^{2} c +4 a \,b^{2}}{4 a^{2} x \left (4 a c -b^{2}\right )} \] Input:

int(1/x/(c*x^5+b*x^3+a*x),x)
 

Output:

(4*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 
 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*c*x - 2*sqrt(a)*sqrt(2*sqrt(c 
)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqr 
t(c)*sqrt(a) + b))*b**2*x + 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sq 
rt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b* 
x - 4*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b 
) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*c*x + 2*sqrt(a)*sqrt(2*sqr 
t(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2* 
sqrt(c)*sqrt(a) + b))*b**2*x - 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan( 
(sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a 
*b*x - 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) - b)*log( - sqrt(2*sqrt(c)*sqrt(a) 
 - b)*x + sqrt(a) + sqrt(c)*x**2)*a*c*x + sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) - 
 b)*log( - sqrt(2*sqrt(c)*sqrt(a) - b)*x + sqrt(a) + sqrt(c)*x**2)*b**2*x 
+ 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) - b)*log(sqrt(2*sqrt(c)*sqrt(a) - b)*x 
+ sqrt(a) + sqrt(c)*x**2)*a*c*x - sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) - b)*log( 
sqrt(2*sqrt(c)*sqrt(a) - b)*x + sqrt(a) + sqrt(c)*x**2)*b**2*x + sqrt(c)*s 
qrt(2*sqrt(c)*sqrt(a) - b)*log( - sqrt(2*sqrt(c)*sqrt(a) - b)*x + sqrt(a) 
+ sqrt(c)*x**2)*a*b*x - sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) - b)*log(sqrt(2*sqr 
t(c)*sqrt(a) - b)*x + sqrt(a) + sqrt(c)*x**2)*a*b*x - 16*a**2*c + 4*a*b**2 
)/(4*a**2*x*(4*a*c - b**2))