\(\int \frac {x^8}{(a x+b x^3+c x^5)^2} \, dx\) [45]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 274 \[ \int \frac {x^8}{\left (a x+b x^3+c x^5\right )^2} \, dx=-\frac {x \left (a b+\left (b^2-2 a c\right ) x^2\right )}{2 c \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\left (6 a-\frac {b^2}{c}+\frac {b \left (b^2-8 a c\right )}{c \sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\left (6 a-\frac {b^2}{c}-\frac {b \left (b^2-8 a c\right )}{c \sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}} \] Output:

-1/2*x*(a*b+(-2*a*c+b^2)*x^2)/c/(-4*a*c+b^2)/(c*x^4+b*x^2+a)-1/4*(6*a-b^2/ 
c+b*(-8*a*c+b^2)/c/(-4*a*c+b^2)^(1/2))*arctan(2^(1/2)*c^(1/2)*x/(b-(-4*a*c 
+b^2)^(1/2))^(1/2))*2^(1/2)/c^(1/2)/(-4*a*c+b^2)/(b-(-4*a*c+b^2)^(1/2))^(1 
/2)-1/4*(6*a-b^2/c-b*(-8*a*c+b^2)/c/(-4*a*c+b^2)^(1/2))*arctan(2^(1/2)*c^( 
1/2)*x/(b+(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)/c^(1/2)/(-4*a*c+b^2)/(b+(-4*a 
*c+b^2)^(1/2))^(1/2)
 

Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 282, normalized size of antiderivative = 1.03 \[ \int \frac {x^8}{\left (a x+b x^3+c x^5\right )^2} \, dx=\frac {-\frac {2 \sqrt {c} x \left (b^2 x^2+a \left (b-2 c x^2\right )\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {2} \left (-b^3+8 a b c+b^2 \sqrt {b^2-4 a c}-6 a c \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \left (b^3-8 a b c+b^2 \sqrt {b^2-4 a c}-6 a c \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}}{4 c^{3/2}} \] Input:

Integrate[x^8/(a*x + b*x^3 + c*x^5)^2,x]
 

Output:

((-2*Sqrt[c]*x*(b^2*x^2 + a*(b - 2*c*x^2)))/((b^2 - 4*a*c)*(a + b*x^2 + c* 
x^4)) + (Sqrt[2]*(-b^3 + 8*a*b*c + b^2*Sqrt[b^2 - 4*a*c] - 6*a*c*Sqrt[b^2 
- 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/((b^2 - 
 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*(b^3 - 8*a*b*c + b^2 
*Sqrt[b^2 - 4*a*c] - 6*a*c*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/S 
qrt[b + Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a* 
c]]))/(4*c^(3/2))
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 253, normalized size of antiderivative = 0.92, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {9, 1440, 1602, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^8}{\left (a x+b x^3+c x^5\right )^2} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {x^6}{\left (a+b x^2+c x^4\right )^2}dx\)

\(\Big \downarrow \) 1440

\(\displaystyle \frac {x^3 \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int \frac {x^2 \left (b x^2+6 a\right )}{c x^4+b x^2+a}dx}{2 \left (b^2-4 a c\right )}\)

\(\Big \downarrow \) 1602

\(\displaystyle \frac {x^3 \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\frac {b x}{c}-\frac {\int \frac {\left (b^2-6 a c\right ) x^2+a b}{c x^4+b x^2+a}dx}{c}}{2 \left (b^2-4 a c\right )}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {x^3 \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\frac {b x}{c}-\frac {\frac {1}{2} \left (-\frac {b \left (b^2-8 a c\right )}{\sqrt {b^2-4 a c}}-6 a c+b^2\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} \left (\frac {b \left (b^2-8 a c\right )}{\sqrt {b^2-4 a c}}-6 a c+b^2\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{c}}{2 \left (b^2-4 a c\right )}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {x^3 \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\frac {b x}{c}-\frac {\frac {\left (-\frac {b \left (b^2-8 a c\right )}{\sqrt {b^2-4 a c}}-6 a c+b^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (\frac {b \left (b^2-8 a c\right )}{\sqrt {b^2-4 a c}}-6 a c+b^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}}{c}}{2 \left (b^2-4 a c\right )}\)

Input:

Int[x^8/(a*x + b*x^3 + c*x^5)^2,x]
 

Output:

(x^3*(2*a + b*x^2))/(2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) - ((b*x)/c - ((( 
b^2 - 6*a*c - (b*(b^2 - 8*a*c))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c] 
*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b - Sqrt[b^2 - 4*a 
*c]]) + ((b^2 - 6*a*c + (b*(b^2 - 8*a*c))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[ 
2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b + Sqrt 
[b^2 - 4*a*c]]))/c)/(2*(b^2 - 4*a*c))
 

Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1440
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[(-d^3)*(d*x)^(m - 3)*(2*a + b*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2* 
(p + 1)*(b^2 - 4*a*c))), x] + Simp[d^4/(2*(p + 1)*(b^2 - 4*a*c))   Int[(d*x 
)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), 
x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && Gt 
Q[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1602
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*( 
x_)^4)^(p_), x_Symbol] :> Simp[e*f*(f*x)^(m - 1)*((a + b*x^2 + c*x^4)^(p + 
1)/(c*(m + 4*p + 3))), x] - Simp[f^2/(c*(m + 4*p + 3))   Int[(f*x)^(m - 2)* 
(a + b*x^2 + c*x^4)^p*Simp[a*e*(m - 1) + (b*e*(m + 2*p + 1) - c*d*(m + 4*p 
+ 3))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && NeQ[b^2 - 4*a*c 
, 0] && GtQ[m, 1] && NeQ[m + 4*p + 3, 0] && IntegerQ[2*p] && (IntegerQ[p] | 
| IntegerQ[m])
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.13 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.55

method result size
risch \(\frac {-\frac {\left (2 a c -b^{2}\right ) x^{3}}{2 c \left (4 a c -b^{2}\right )}+\frac {a b x}{2 c \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (\frac {\left (6 a c -b^{2}\right ) \textit {\_R}^{2}}{4 a c -b^{2}}-\frac {a b}{4 a c -b^{2}}\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} c +\textit {\_R} b}}{4 c}\) \(151\)
default \(\frac {-\frac {\left (2 a c -b^{2}\right ) x^{3}}{2 c \left (4 a c -b^{2}\right )}+\frac {a b x}{2 c \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {-\frac {\left (6 a c \sqrt {-4 a c +b^{2}}-b^{2} \sqrt {-4 a c +b^{2}}-8 a b c +b^{3}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}+\frac {\left (6 a c \sqrt {-4 a c +b^{2}}-b^{2} \sqrt {-4 a c +b^{2}}+8 a b c -b^{3}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}}{4 a c -b^{2}}\) \(279\)

Input:

int(x^8/(c*x^5+b*x^3+a*x)^2,x,method=_RETURNVERBOSE)
 

Output:

(-1/2/c*(2*a*c-b^2)/(4*a*c-b^2)*x^3+1/2/c*a*b/(4*a*c-b^2)*x)/(c*x^4+b*x^2+ 
a)+1/4/c*sum(((6*a*c-b^2)/(4*a*c-b^2)*_R^2-a*b/(4*a*c-b^2))/(2*_R^3*c+_R*b 
)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2257 vs. \(2 (232) = 464\).

Time = 0.15 (sec) , antiderivative size = 2257, normalized size of antiderivative = 8.24 \[ \int \frac {x^8}{\left (a x+b x^3+c x^5\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(x^8/(c*x^5+b*x^3+a*x)^2,x, algorithm="fricas")
 

Output:

-1/4*(2*(b^2 - 2*a*c)*x^3 + 2*a*b*x - sqrt(1/2)*((b^2*c^2 - 4*a*c^3)*x^4 + 
 a*b^2*c - 4*a^2*c^2 + (b^3*c - 4*a*b*c^2)*x^2)*sqrt(-(b^5 - 15*a*b^3*c + 
60*a^2*b*c^2 + (b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)*sqrt 
((b^4 - 18*a*b^2*c + 81*a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 
- 64*a^3*c^9)))/(b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6))*lo 
g((5*a*b^4 - 81*a^2*b^2*c + 324*a^3*c^2)*x + 1/2*sqrt(1/2)*(b^7 - 17*a*b^5 
*c + 88*a^2*b^3*c^2 - 144*a^3*b*c^3 - (b^8*c^3 - 24*a*b^6*c^4 + 192*a^2*b^ 
4*c^5 - 640*a^3*b^2*c^6 + 768*a^4*c^7)*sqrt((b^4 - 18*a*b^2*c + 81*a^2*c^2 
)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))*sqrt(-(b^5 - 15 
*a*b^3*c + 60*a^2*b*c^2 + (b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^ 
3*c^6)*sqrt((b^4 - 18*a*b^2*c + 81*a^2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a 
^2*b^2*c^8 - 64*a^3*c^9)))/(b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a 
^3*c^6))) + sqrt(1/2)*((b^2*c^2 - 4*a*c^3)*x^4 + a*b^2*c - 4*a^2*c^2 + (b^ 
3*c - 4*a*b*c^2)*x^2)*sqrt(-(b^5 - 15*a*b^3*c + 60*a^2*b*c^2 + (b^6*c^3 - 
12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)*sqrt((b^4 - 18*a*b^2*c + 81*a^ 
2*c^2)/(b^6*c^6 - 12*a*b^4*c^7 + 48*a^2*b^2*c^8 - 64*a^3*c^9)))/(b^6*c^3 - 
 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6))*log((5*a*b^4 - 81*a^2*b^2*c 
+ 324*a^3*c^2)*x - 1/2*sqrt(1/2)*(b^7 - 17*a*b^5*c + 88*a^2*b^3*c^2 - 144* 
a^3*b*c^3 - (b^8*c^3 - 24*a*b^6*c^4 + 192*a^2*b^4*c^5 - 640*a^3*b^2*c^6 + 
768*a^4*c^7)*sqrt((b^4 - 18*a*b^2*c + 81*a^2*c^2)/(b^6*c^6 - 12*a*b^4*c...
 

Sympy [A] (verification not implemented)

Time = 25.64 (sec) , antiderivative size = 379, normalized size of antiderivative = 1.38 \[ \int \frac {x^8}{\left (a x+b x^3+c x^5\right )^2} \, dx=\frac {a b x + x^{3} \left (- 2 a c + b^{2}\right )}{8 a^{2} c^{2} - 2 a b^{2} c + x^{4} \cdot \left (8 a c^{3} - 2 b^{2} c^{2}\right ) + x^{2} \cdot \left (8 a b c^{2} - 2 b^{3} c\right )} + \operatorname {RootSum} {\left (t^{4} \cdot \left (1048576 a^{6} c^{9} - 1572864 a^{5} b^{2} c^{8} + 983040 a^{4} b^{4} c^{7} - 327680 a^{3} b^{6} c^{6} + 61440 a^{2} b^{8} c^{5} - 6144 a b^{10} c^{4} + 256 b^{12} c^{3}\right ) + t^{2} \left (- 61440 a^{5} b c^{5} + 61440 a^{4} b^{3} c^{4} - 24064 a^{3} b^{5} c^{3} + 4608 a^{2} b^{7} c^{2} - 432 a b^{9} c + 16 b^{11}\right ) + 1296 a^{5} c^{2} - 360 a^{4} b^{2} c + 25 a^{3} b^{4}, \left ( t \mapsto t \log {\left (x + \frac {49152 t^{3} a^{4} c^{7} - 40960 t^{3} a^{3} b^{2} c^{6} + 12288 t^{3} a^{2} b^{4} c^{5} - 1536 t^{3} a b^{6} c^{4} + 64 t^{3} b^{8} c^{3} - 1728 t a^{3} b c^{3} + 656 t a^{2} b^{3} c^{2} - 88 t a b^{5} c + 4 t b^{7}}{324 a^{3} c^{2} - 81 a^{2} b^{2} c + 5 a b^{4}} \right )} \right )\right )} \] Input:

integrate(x**8/(c*x**5+b*x**3+a*x)**2,x)
 

Output:

(a*b*x + x**3*(-2*a*c + b**2))/(8*a**2*c**2 - 2*a*b**2*c + x**4*(8*a*c**3 
- 2*b**2*c**2) + x**2*(8*a*b*c**2 - 2*b**3*c)) + RootSum(_t**4*(1048576*a* 
*6*c**9 - 1572864*a**5*b**2*c**8 + 983040*a**4*b**4*c**7 - 327680*a**3*b** 
6*c**6 + 61440*a**2*b**8*c**5 - 6144*a*b**10*c**4 + 256*b**12*c**3) + _t** 
2*(-61440*a**5*b*c**5 + 61440*a**4*b**3*c**4 - 24064*a**3*b**5*c**3 + 4608 
*a**2*b**7*c**2 - 432*a*b**9*c + 16*b**11) + 1296*a**5*c**2 - 360*a**4*b** 
2*c + 25*a**3*b**4, Lambda(_t, _t*log(x + (49152*_t**3*a**4*c**7 - 40960*_ 
t**3*a**3*b**2*c**6 + 12288*_t**3*a**2*b**4*c**5 - 1536*_t**3*a*b**6*c**4 
+ 64*_t**3*b**8*c**3 - 1728*_t*a**3*b*c**3 + 656*_t*a**2*b**3*c**2 - 88*_t 
*a*b**5*c + 4*_t*b**7)/(324*a**3*c**2 - 81*a**2*b**2*c + 5*a*b**4))))
 

Maxima [F]

\[ \int \frac {x^8}{\left (a x+b x^3+c x^5\right )^2} \, dx=\int { \frac {x^{8}}{{\left (c x^{5} + b x^{3} + a x\right )}^{2}} \,d x } \] Input:

integrate(x^8/(c*x^5+b*x^3+a*x)^2,x, algorithm="maxima")
 

Output:

-1/2*((b^2 - 2*a*c)*x^3 + a*b*x)/((b^2*c^2 - 4*a*c^3)*x^4 + a*b^2*c - 4*a^ 
2*c^2 + (b^3*c - 4*a*b*c^2)*x^2) - 1/2*integrate(-((b^2 - 6*a*c)*x^2 + a*b 
)/(c*x^4 + b*x^2 + a), x)/(b^2*c - 4*a*c^2)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2736 vs. \(2 (232) = 464\).

Time = 0.75 (sec) , antiderivative size = 2736, normalized size of antiderivative = 9.99 \[ \int \frac {x^8}{\left (a x+b x^3+c x^5\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(x^8/(c*x^5+b*x^3+a*x)^2,x, algorithm="giac")
 

Output:

-1/2*(b^2*x^3 - 2*a*c*x^3 + a*b*x)/((c*x^4 + b*x^2 + a)*(b^2*c - 4*a*c^2)) 
 - 1/16*(2*b^8*c^4 - 32*a*b^6*c^5 + 160*a^2*b^4*c^6 - 256*a^3*b^2*c^7 - sq 
rt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^8*c^2 + 16*sqrt( 
2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^6*c^3 + 2*sqrt(2) 
*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^7*c^3 - 80*sqrt(2)*sq 
rt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c^4 - 24*sqrt(2)*s 
qrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^5*c^4 - sqrt(2)*sqrt( 
b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^6*c^4 + 128*sqrt(2)*sqrt(b^ 
2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^5 + 64*sqrt(2)*sqrt(b 
^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^5 + 12*sqrt(2)*sqrt( 
b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^5 - 32*sqrt(2)*sqrt(b 
^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^6 - 2*(b^2 - 4*a*c)* 
b^6*c^4 + 24*(b^2 - 4*a*c)*a*b^4*c^5 - 64*(b^2 - 4*a*c)*a^2*b^2*c^6 - (2*b 
^4*c^2 - 20*a*b^2*c^3 + 48*a^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + 
sqrt(b^2 - 4*a*c)*c)*b^4 + 10*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^ 
2 - 4*a*c)*c)*a*b^2*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 
4*a*c)*c)*b^3*c - 24*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c 
)*c)*a^2*c^2 - 12*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c 
)*a*b*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2* 
c^2 + 6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*c^3...
 

Mupad [B] (verification not implemented)

Time = 13.53 (sec) , antiderivative size = 6293, normalized size of antiderivative = 22.97 \[ \int \frac {x^8}{\left (a x+b x^3+c x^5\right )^2} \, dx=\text {Too large to display} \] Input:

int(x^8/(a*x + b*x^3 + c*x^5)^2,x)
 

Output:

- ((x^3*(2*a*c - b^2))/(2*c*(4*a*c - b^2)) - (a*b*x)/(2*c*(4*a*c - b^2)))/ 
(a + b*x^2 + c*x^4) - atan(((((16*a*b^7*c^2 - 1024*a^4*b*c^5 - 192*a^2*b^5 
*c^3 + 768*a^3*b^3*c^4)/(8*(b^6*c - 64*a^3*c^4 - 12*a*b^4*c^2 + 48*a^2*b^2 
*c^3)) - (x*(-(b^11 + b^2*(-(4*a*c - b^2)^9)^(1/2) - 3840*a^5*b*c^5 + 288* 
a^2*b^7*c^2 - 1504*a^3*b^5*c^3 + 3840*a^4*b^3*c^4 - 27*a*b^9*c - 9*a*c*(-( 
4*a*c - b^2)^9)^(1/2))/(32*(4096*a^6*c^9 + b^12*c^3 - 24*a*b^10*c^4 + 240* 
a^2*b^8*c^5 - 1280*a^3*b^6*c^6 + 3840*a^4*b^4*c^7 - 6144*a^5*b^2*c^8)))^(1 
/2)*(16*b^7*c^3 - 192*a*b^5*c^4 - 1024*a^3*b*c^6 + 768*a^2*b^3*c^5))/(2*(b 
^4*c + 16*a^2*c^3 - 8*a*b^2*c^2)))*(-(b^11 + b^2*(-(4*a*c - b^2)^9)^(1/2) 
- 3840*a^5*b*c^5 + 288*a^2*b^7*c^2 - 1504*a^3*b^5*c^3 + 3840*a^4*b^3*c^4 - 
 27*a*b^9*c - 9*a*c*(-(4*a*c - b^2)^9)^(1/2))/(32*(4096*a^6*c^9 + b^12*c^3 
 - 24*a*b^10*c^4 + 240*a^2*b^8*c^5 - 1280*a^3*b^6*c^6 + 3840*a^4*b^4*c^7 - 
 6144*a^5*b^2*c^8)))^(1/2) - (x*(b^6 - 72*a^3*c^3 + 74*a^2*b^2*c^2 - 16*a* 
b^4*c))/(2*(b^4*c + 16*a^2*c^3 - 8*a*b^2*c^2)))*(-(b^11 + b^2*(-(4*a*c - b 
^2)^9)^(1/2) - 3840*a^5*b*c^5 + 288*a^2*b^7*c^2 - 1504*a^3*b^5*c^3 + 3840* 
a^4*b^3*c^4 - 27*a*b^9*c - 9*a*c*(-(4*a*c - b^2)^9)^(1/2))/(32*(4096*a^6*c 
^9 + b^12*c^3 - 24*a*b^10*c^4 + 240*a^2*b^8*c^5 - 1280*a^3*b^6*c^6 + 3840* 
a^4*b^4*c^7 - 6144*a^5*b^2*c^8)))^(1/2)*1i - (((16*a*b^7*c^2 - 1024*a^4*b* 
c^5 - 192*a^2*b^5*c^3 + 768*a^3*b^3*c^4)/(8*(b^6*c - 64*a^3*c^4 - 12*a*b^4 
*c^2 + 48*a^2*b^2*c^3)) + (x*(-(b^11 + b^2*(-(4*a*c - b^2)^9)^(1/2) - 3...
 

Reduce [B] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 2411, normalized size of antiderivative = 8.80 \[ \int \frac {x^8}{\left (a x+b x^3+c x^5\right )^2} \, dx =\text {Too large to display} \] Input:

int(x^8/(c*x^5+b*x^3+a*x)^2,x)
 

Output:

( - 24*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - 
b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**2*c**2 + 2*sqrt(a)*sqrt( 
2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sq 
rt(2*sqrt(c)*sqrt(a) + b))*a*b**2*c - 24*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + 
b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) 
 + b))*a*b*c**2*x**2 - 24*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2 
*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*c**3*x 
**4 + 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - 
 b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b**3*c*x**2 + 2*sqrt(a)*sq 
rt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x) 
/sqrt(2*sqrt(c)*sqrt(a) + b))*b**2*c**2*x**4 + 16*sqrt(c)*sqrt(2*sqrt(c)*s 
qrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c 
)*sqrt(a) + b))*a**2*b*c - 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqr 
t(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b** 
3 + 16*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - 
b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b**2*c*x**2 + 16*sqrt(c)* 
sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)* 
x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b*c**2*x**4 - 2*sqrt(c)*sqrt(2*sqrt(c)*s 
qrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c 
)*sqrt(a) + b))*b**4*x**2 - 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan(...