\(\int \frac {x^4}{(a x+b x^3+c x^5)^2} \, dx\) [47]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 221 \[ \int \frac {x^4}{\left (a x+b x^3+c x^5\right )^2} \, dx=-\frac {x \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (2 b-\sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {c} \left (2 b+\sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}} \] Output:

-1/2*x*(2*c*x^2+b)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/2*c^(1/2)*(2*b-(-4*a*c+b 
^2)^(1/2))*arctan(2^(1/2)*c^(1/2)*x/(b-(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)/ 
(-4*a*c+b^2)^(3/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)-1/2*c^(1/2)*(2*b+(-4*a*c+b 
^2)^(1/2))*arctan(2^(1/2)*c^(1/2)*x/(b+(-4*a*c+b^2)^(1/2))^(1/2))*2^(1/2)/ 
(-4*a*c+b^2)^(3/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)
 

Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.00 \[ \int \frac {x^4}{\left (a x+b x^3+c x^5\right )^2} \, dx=\frac {-b x-2 c x^3}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\sqrt {c} \left (-2 b+\sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {c} \left (2 b+\sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}} \] Input:

Integrate[x^4/(a*x + b*x^3 + c*x^5)^2,x]
 

Output:

(-(b*x) - 2*c*x^3)/(2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) - (Sqrt[c]*(-2*b 
+ Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c] 
]])/(Sqrt[2]*(b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[c]*( 
2*b + Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4* 
a*c]]])/(Sqrt[2]*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])
 

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 213, normalized size of antiderivative = 0.96, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {9, 1439, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4}{\left (a x+b x^3+c x^5\right )^2} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {x^2}{\left (a+b x^2+c x^4\right )^2}dx\)

\(\Big \downarrow \) 1439

\(\displaystyle \frac {\int \frac {b-2 c x^2}{c x^4+b x^2+a}dx}{2 \left (b^2-4 a c\right )}-\frac {x \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {-c \left (1-\frac {2 b}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx-c \left (\frac {2 b}{\sqrt {b^2-4 a c}}+1\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{2 \left (b^2-4 a c\right )}-\frac {x \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {-\frac {\sqrt {2} \sqrt {c} \left (1-\frac {2 b}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\sqrt {2} \sqrt {c} \left (\frac {2 b}{\sqrt {b^2-4 a c}}+1\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {\sqrt {b^2-4 a c}+b}}}{2 \left (b^2-4 a c\right )}-\frac {x \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\)

Input:

Int[x^4/(a*x + b*x^3 + c*x^5)^2,x]
 

Output:

-1/2*(x*(b + 2*c*x^2))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (-((Sqrt[2]*S 
qrt[c]*(1 - (2*b)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - S 
qrt[b^2 - 4*a*c]]])/Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[2]*Sqrt[c]*(1 + ( 
2*b)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a 
*c]]])/Sqrt[b + Sqrt[b^2 - 4*a*c]])/(2*(b^2 - 4*a*c))
 

Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1439
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[d*(d*x)^(m - 1)*(b + 2*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*(p + 
1)*(b^2 - 4*a*c))), x] - Simp[d^2/(2*(p + 1)*(b^2 - 4*a*c))   Int[(d*x)^(m 
- 2)*(b*(m - 1) + 2*c*(m + 4*p + 5)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x 
] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 
1] && LeQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.19 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.55

method result size
risch \(\frac {\frac {c \,x^{3}}{4 a c -b^{2}}+\frac {b x}{8 a c -2 b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (\frac {2 c \,\textit {\_R}^{2}}{4 a c -b^{2}}-\frac {b}{4 a c -b^{2}}\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} c +\textit {\_R} b}\right )}{4}\) \(122\)
default \(16 c^{2} \left (\frac {\frac {\sqrt {-4 a c +b^{2}}\, x}{8 c \left (x^{2}+\frac {b}{2 c}-\frac {\sqrt {-4 a c +b^{2}}}{2 c}\right )}-\frac {\left (-b +\frac {\sqrt {-4 a c +b^{2}}}{2}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}}{4 c \left (4 a c -b^{2}\right ) \sqrt {-4 a c +b^{2}}}+\frac {\frac {\sqrt {-4 a c +b^{2}}\, x}{8 c \left (x^{2}+\frac {\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}\right )}+\frac {\left (b +\frac {\sqrt {-4 a c +b^{2}}}{2}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}}{4 c \left (4 a c -b^{2}\right ) \sqrt {-4 a c +b^{2}}}\right )\) \(271\)

Input:

int(x^4/(c*x^5+b*x^3+a*x)^2,x,method=_RETURNVERBOSE)
 

Output:

(c/(4*a*c-b^2)*x^3+1/2/(4*a*c-b^2)*b*x)/(c*x^4+b*x^2+a)+1/4*sum((2*c/(4*a* 
c-b^2)*_R^2-1/(4*a*c-b^2)*b)/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^ 
2*b+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1680 vs. \(2 (180) = 360\).

Time = 0.14 (sec) , antiderivative size = 1680, normalized size of antiderivative = 7.60 \[ \int \frac {x^4}{\left (a x+b x^3+c x^5\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(x^4/(c*x^5+b*x^3+a*x)^2,x, algorithm="fricas")
 

Output:

-1/4*(4*c*x^3 + sqrt(1/2)*((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 
- 4*a*b*c)*x^2)*sqrt(-(b^3 + 12*a*b*c + (a*b^6 - 12*a^2*b^4*c + 48*a^3*b^2 
*c^2 - 64*a^4*c^3)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c 
^3))/(a*b^6 - 12*a^2*b^4*c + 48*a^3*b^2*c^2 - 64*a^4*c^3))*log((3*b^2*c + 
4*a*c^2)*x + 1/2*sqrt(1/2)*(b^5 - 8*a*b^3*c + 16*a^2*b*c^2 - (a*b^8 - 8*a^ 
2*b^6*c + 128*a^4*b^2*c^3 - 256*a^5*c^4)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48* 
a^4*b^2*c^2 - 64*a^5*c^3))*sqrt(-(b^3 + 12*a*b*c + (a*b^6 - 12*a^2*b^4*c + 
 48*a^3*b^2*c^2 - 64*a^4*c^3)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 
 - 64*a^5*c^3))/(a*b^6 - 12*a^2*b^4*c + 48*a^3*b^2*c^2 - 64*a^4*c^3))) - s 
qrt(1/2)*((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*s 
qrt(-(b^3 + 12*a*b*c + (a*b^6 - 12*a^2*b^4*c + 48*a^3*b^2*c^2 - 64*a^4*c^3 
)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^6 - 12* 
a^2*b^4*c + 48*a^3*b^2*c^2 - 64*a^4*c^3))*log((3*b^2*c + 4*a*c^2)*x - 1/2* 
sqrt(1/2)*(b^5 - 8*a*b^3*c + 16*a^2*b*c^2 - (a*b^8 - 8*a^2*b^6*c + 128*a^4 
*b^2*c^3 - 256*a^5*c^4)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64* 
a^5*c^3))*sqrt(-(b^3 + 12*a*b*c + (a*b^6 - 12*a^2*b^4*c + 48*a^3*b^2*c^2 - 
 64*a^4*c^3)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/( 
a*b^6 - 12*a^2*b^4*c + 48*a^3*b^2*c^2 - 64*a^4*c^3))) + sqrt(1/2)*((b^2*c 
- 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(-(b^3 + 12*a* 
b*c - (a*b^6 - 12*a^2*b^4*c + 48*a^3*b^2*c^2 - 64*a^4*c^3)/sqrt(a^2*b^6...
 

Sympy [A] (verification not implemented)

Time = 9.26 (sec) , antiderivative size = 298, normalized size of antiderivative = 1.35 \[ \int \frac {x^4}{\left (a x+b x^3+c x^5\right )^2} \, dx=\frac {b x + 2 c x^{3}}{8 a^{2} c - 2 a b^{2} + x^{4} \cdot \left (8 a c^{2} - 2 b^{2} c\right ) + x^{2} \cdot \left (8 a b c - 2 b^{3}\right )} + \operatorname {RootSum} {\left (t^{4} \cdot \left (1048576 a^{7} c^{6} - 1572864 a^{6} b^{2} c^{5} + 983040 a^{5} b^{4} c^{4} - 327680 a^{4} b^{6} c^{3} + 61440 a^{3} b^{8} c^{2} - 6144 a^{2} b^{10} c + 256 a b^{12}\right ) + t^{2} \left (- 12288 a^{4} b c^{4} + 8192 a^{3} b^{3} c^{3} - 1536 a^{2} b^{5} c^{2} + 16 b^{9}\right ) + 16 a^{2} c^{3} + 24 a b^{2} c^{2} + 9 b^{4} c, \left ( t \mapsto t \log {\left (x + \frac {16384 t^{3} a^{5} c^{4} - 8192 t^{3} a^{4} b^{2} c^{3} + 512 t^{3} a^{2} b^{6} c - 64 t^{3} a b^{8} - 128 t a^{2} b c^{2} - 16 t a b^{3} c - 4 t b^{5}}{4 a c^{2} + 3 b^{2} c} \right )} \right )\right )} \] Input:

integrate(x**4/(c*x**5+b*x**3+a*x)**2,x)
 

Output:

(b*x + 2*c*x**3)/(8*a**2*c - 2*a*b**2 + x**4*(8*a*c**2 - 2*b**2*c) + x**2* 
(8*a*b*c - 2*b**3)) + RootSum(_t**4*(1048576*a**7*c**6 - 1572864*a**6*b**2 
*c**5 + 983040*a**5*b**4*c**4 - 327680*a**4*b**6*c**3 + 61440*a**3*b**8*c* 
*2 - 6144*a**2*b**10*c + 256*a*b**12) + _t**2*(-12288*a**4*b*c**4 + 8192*a 
**3*b**3*c**3 - 1536*a**2*b**5*c**2 + 16*b**9) + 16*a**2*c**3 + 24*a*b**2* 
c**2 + 9*b**4*c, Lambda(_t, _t*log(x + (16384*_t**3*a**5*c**4 - 8192*_t**3 
*a**4*b**2*c**3 + 512*_t**3*a**2*b**6*c - 64*_t**3*a*b**8 - 128*_t*a**2*b* 
c**2 - 16*_t*a*b**3*c - 4*_t*b**5)/(4*a*c**2 + 3*b**2*c))))
 

Maxima [F]

\[ \int \frac {x^4}{\left (a x+b x^3+c x^5\right )^2} \, dx=\int { \frac {x^{4}}{{\left (c x^{5} + b x^{3} + a x\right )}^{2}} \,d x } \] Input:

integrate(x^4/(c*x^5+b*x^3+a*x)^2,x, algorithm="maxima")
 

Output:

-1/2*(2*c*x^3 + b*x)/((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a 
*b*c)*x^2) - 1/2*integrate((2*c*x^2 - b)/(c*x^4 + b*x^2 + a), x)/(b^2 - 4* 
a*c)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1971 vs. \(2 (180) = 360\).

Time = 0.67 (sec) , antiderivative size = 1971, normalized size of antiderivative = 8.92 \[ \int \frac {x^4}{\left (a x+b x^3+c x^5\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(x^4/(c*x^5+b*x^3+a*x)^2,x, algorithm="giac")
 

Output:

-1/2*(2*c*x^3 + b*x)/((c*x^4 + b*x^2 + a)*(b^2 - 4*a*c)) - 1/8*(4*b^6*c^2 
- 32*a*b^4*c^3 + 64*a^2*b^2*c^4 - 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + s 
qrt(b^2 - 4*a*c)*c)*b^6 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 
 - 4*a*c)*c)*a*b^4*c + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4 
*a*c)*c)*b^5*c - 32*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c) 
*c)*a^2*b^2*c^2 - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c 
)*c)*a*b^3*c^2 - 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)* 
c)*b^4*c^2 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a 
*b^2*c^3 - 4*(b^2 - 4*a*c)*b^4*c^2 + 16*(b^2 - 4*a*c)*a*b^2*c^3 - (2*b^2*c 
^2 - 8*a*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b 
^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*c + 2*s 
qrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c - sqrt(2)*sqr 
t(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*c^2 - 2*(b^2 - 4*a*c)*c^2)* 
(b^2 - 4*a*c)^2 - (sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5 - 8*sqrt(2) 
*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 
 4*a*c)*c)*b^4*c - 2*b^5*c + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^ 
2*b*c^2 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 + sqrt(2)*sq 
rt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^2 + 16*a*b^3*c^2 - 4*sqrt(2)*sqrt(b*c 
+ sqrt(b^2 - 4*a*c)*c)*a*b*c^3 - 32*a^2*b*c^3 + 2*(b^2 - 4*a*c)*b^3*c - 8* 
(b^2 - 4*a*c)*a*b*c^2)*abs(b^2 - 4*a*c))*arctan(2*sqrt(1/2)*x/sqrt((b^3...
 

Mupad [B] (verification not implemented)

Time = 0.78 (sec) , antiderivative size = 4854, normalized size of antiderivative = 21.96 \[ \int \frac {x^4}{\left (a x+b x^3+c x^5\right )^2} \, dx=\text {Too large to display} \] Input:

int(x^4/(a*x + b*x^3 + c*x^5)^2,x)
 

Output:

atan(((((8*b^7*c^2 - 96*a*b^5*c^3 - 512*a^3*b*c^5 + 384*a^2*b^3*c^4)/(4*(b 
^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)) + (x*(((-(4*a*c - b^2)^9)^ 
(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/(32*(a*b^1 
2 + 4096*a^7*c^6 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 38 
40*a^5*b^4*c^4 - 6144*a^6*b^2*c^5)))^(1/2)*(8*b^7*c^2 - 96*a*b^5*c^3 - 512 
*a^3*b*c^5 + 384*a^2*b^3*c^4))/(b^4 + 16*a^2*c^2 - 8*a*b^2*c))*(((-(4*a*c 
- b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/ 
(32*(a*b^12 + 4096*a^7*c^6 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^ 
6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5)))^(1/2) - (x*(4*a*c^4 - 5*b^2 
*c^3))/(b^4 + 16*a^2*c^2 - 8*a*b^2*c))*(((-(4*a*c - b^2)^9)^(1/2) - b^9 + 
768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/(32*(a*b^12 + 4096*a^7*c 
^6 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 
 - 6144*a^6*b^2*c^5)))^(1/2)*1i - (((8*b^7*c^2 - 96*a*b^5*c^3 - 512*a^3*b* 
c^5 + 384*a^2*b^3*c^4)/(4*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c) 
) - (x*(((-(4*a*c - b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 
 512*a^3*b^3*c^3)/(32*(a*b^12 + 4096*a^7*c^6 - 24*a^2*b^10*c + 240*a^3*b^8 
*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5)))^(1/2)*(8* 
b^7*c^2 - 96*a*b^5*c^3 - 512*a^3*b*c^5 + 384*a^2*b^3*c^4))/(b^4 + 16*a^2*c 
^2 - 8*a*b^2*c))*(((-(4*a*c - b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2 
*b^5*c^2 - 512*a^3*b^3*c^3)/(32*(a*b^12 + 4096*a^7*c^6 - 24*a^2*b^10*c ...
 

Reduce [B] (verification not implemented)

Time = 0.40 (sec) , antiderivative size = 1795, normalized size of antiderivative = 8.12 \[ \int \frac {x^4}{\left (a x+b x^3+c x^5\right )^2} \, dx =\text {Too large to display} \] Input:

int(x^4/(c*x^5+b*x^3+a*x)^2,x)
 

Output:

( - 8*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b 
) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a**2*c - 2*sqrt(a)*sqrt(2*sq 
rt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2 
*sqrt(c)*sqrt(a) + b))*a*b**2 - 8*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan 
((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))* 
a*b*c*x**2 - 8*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sq 
rt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*c**2*x**4 - 2*sqr 
t(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqr 
t(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*b**3*x**2 - 2*sqrt(a)*sqrt(2*sqrt(c)* 
sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt( 
c)*sqrt(a) + b))*b**2*c*x**4 + 8*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan( 
(sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a 
**2*b + 8*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) 
 - b) - 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b**2*x**2 + 8*sqrt(c)* 
sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) - 2*sqrt(c)* 
x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b*c*x**4 + 8*sqrt(a)*sqrt(2*sqrt(c)*sqrt 
(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*s 
qrt(a) + b))*a**2*c + 2*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*s 
qrt(c)*sqrt(a) - b) + 2*sqrt(c)*x)/sqrt(2*sqrt(c)*sqrt(a) + b))*a*b**2 + 8 
*sqrt(a)*sqrt(2*sqrt(c)*sqrt(a) + b)*atan((sqrt(2*sqrt(c)*sqrt(a) - b) ...