\(\int \frac {A+B x+C x^2}{a d+(b d+a e) x+(c d+b e) x^2+c e x^3} \, dx\) [127]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 43, antiderivative size = 196 \[ \int \frac {A+B x+C x^2}{a d+(b d+a e) x+(c d+b e) x^2+c e x^3} \, dx=-\frac {\left (b^2 C d+2 c (A c d-a C d+a B e)-b (B c d+A c e+a C e)\right ) \text {arctanh}\left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right )}{c \sqrt {b^2-4 a c} \left (c d^2-b d e+a e^2\right )}+\frac {\left (C d^2-e (B d-A e)\right ) \log (d+e x)}{e \left (c d^2-b d e+a e^2\right )}+\frac {(B c d-b C d-A c e+a C e) \log \left (a+b x+c x^2\right )}{2 c \left (c d^2-b d e+a e^2\right )} \] Output:

-(b^2*C*d+2*c*(A*c*d+B*a*e-C*a*d)-b*(A*c*e+B*c*d+C*a*e))*arctanh((2*c*x+b) 
/(-4*a*c+b^2)^(1/2))/c/(-4*a*c+b^2)^(1/2)/(a*e^2-b*d*e+c*d^2)+(C*d^2-e*(-A 
*e+B*d))*ln(e*x+d)/e/(a*e^2-b*d*e+c*d^2)+1/2*(-A*c*e+B*c*d+C*a*e-C*b*d)*ln 
(c*x^2+b*x+a)/c/(a*e^2-b*d*e+c*d^2)
 

Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.98 \[ \int \frac {A+B x+C x^2}{a d+(b d+a e) x+(c d+b e) x^2+c e x^3} \, dx=\frac {-2 e \left (-b^2 C d-2 c (A c d-a C d+a B e)+b (B c d+A c e+a C e)\right ) \arctan \left (\frac {b+2 c x}{\sqrt {-b^2+4 a c}}\right )+2 c \sqrt {-b^2+4 a c} \left (C d^2+e (-B d+A e)\right ) \log (d+e x)+\sqrt {-b^2+4 a c} e (B c d-b C d-A c e+a C e) \log (a+x (b+c x))}{2 c \sqrt {-b^2+4 a c} e \left (c d^2+e (-b d+a e)\right )} \] Input:

Integrate[(A + B*x + C*x^2)/(a*d + (b*d + a*e)*x + (c*d + b*e)*x^2 + c*e*x 
^3),x]
 

Output:

(-2*e*(-(b^2*C*d) - 2*c*(A*c*d - a*C*d + a*B*e) + b*(B*c*d + A*c*e + a*C*e 
))*ArcTan[(b + 2*c*x)/Sqrt[-b^2 + 4*a*c]] + 2*c*Sqrt[-b^2 + 4*a*c]*(C*d^2 
+ e*(-(B*d) + A*e))*Log[d + e*x] + Sqrt[-b^2 + 4*a*c]*e*(B*c*d - b*C*d - A 
*c*e + a*C*e)*Log[a + x*(b + c*x)])/(2*c*Sqrt[-b^2 + 4*a*c]*e*(c*d^2 + e*( 
-(b*d) + a*e)))
 

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {2462, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B x+C x^2}{x (a e+b d)+a d+x^2 (b e+c d)+c e x^3} \, dx\)

\(\Big \downarrow \) 2462

\(\displaystyle \int \left (\frac {x (a C e-A c e-b C d+B c d)+a B e-a C d-A b e+A c d}{\left (a+b x+c x^2\right ) \left (a e^2-b d e+c d^2\right )}+\frac {A e^2-B d e+C d^2}{(d+e x) \left (a e^2-b d e+c d^2\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\text {arctanh}\left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right ) \left (-b (a C e+A c e+B c d)+2 c (a B e-a C d+A c d)+b^2 C d\right )}{c \sqrt {b^2-4 a c} \left (a e^2-b d e+c d^2\right )}+\frac {\log \left (a+b x+c x^2\right ) (a C e-A c e-b C d+B c d)}{2 c \left (a e^2-b d e+c d^2\right )}+\frac {\log (d+e x) \left (C d^2-e (B d-A e)\right )}{e \left (a e^2-b d e+c d^2\right )}\)

Input:

Int[(A + B*x + C*x^2)/(a*d + (b*d + a*e)*x + (c*d + b*e)*x^2 + c*e*x^3),x]
 

Output:

-(((b^2*C*d + 2*c*(A*c*d - a*C*d + a*B*e) - b*(B*c*d + A*c*e + a*C*e))*Arc 
Tanh[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]])/(c*Sqrt[b^2 - 4*a*c]*(c*d^2 - b*d*e + 
 a*e^2))) + ((C*d^2 - e*(B*d - A*e))*Log[d + e*x])/(e*(c*d^2 - b*d*e + a*e 
^2)) + ((B*c*d - b*C*d - A*c*e + a*C*e)*Log[a + b*x + c*x^2])/(2*c*(c*d^2 
- b*d*e + a*e^2))
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2462
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{Qx = Factor[Px]}, Int[ExpandIntegr 
and[u*Qx^p, x], x] /;  !SumQ[NonfreeFactors[Qx, x]]] /; PolyQ[Px, x] && GtQ 
[Expon[Px, x], 2] &&  !BinomialQ[Px, x] &&  !TrinomialQ[Px, x] && ILtQ[p, 0 
] && RationalFunctionQ[u, x]
 
Maple [A] (verified)

Time = 0.18 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.91

method result size
default \(\frac {\frac {\left (-A c e +B c d +C a e -C b d \right ) \ln \left (c \,x^{2}+b x +a \right )}{2 c}+\frac {2 \left (-A b e +A c d +B a e -C a d -\frac {\left (-A c e +B c d +C a e -C b d \right ) b}{2 c}\right ) \arctan \left (\frac {2 c x +b}{\sqrt {4 a c -b^{2}}}\right )}{\sqrt {4 a c -b^{2}}}}{a \,e^{2}-b d e +c \,d^{2}}+\frac {\left (A \,e^{2}-B d e +C \,d^{2}\right ) \ln \left (e x +d \right )}{\left (a \,e^{2}-b d e +c \,d^{2}\right ) e}\) \(179\)
risch \(\frac {e \ln \left (e x +d \right ) A}{a \,e^{2}-b d e +c \,d^{2}}-\frac {\ln \left (e x +d \right ) B d}{a \,e^{2}-b d e +c \,d^{2}}+\frac {\ln \left (e x +d \right ) C \,d^{2}}{\left (a \,e^{2}-b d e +c \,d^{2}\right ) e}+\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (4 a^{2} c^{2} e^{2}-a \,b^{2} c \,e^{2}-4 a b \,c^{2} d e +4 a \,c^{3} d^{2}+b^{3} c d e -b^{2} c^{2} d^{2}\right ) \textit {\_Z}^{2}+\left (4 A a \,c^{2} e -A \,b^{2} c e -4 B \,c^{2} d a +B \,b^{2} c d -4 C \,a^{2} c e +C a \,b^{2} e +4 C a b c d -C \,b^{3} d \right ) \textit {\_Z} +A^{2} c^{2}-A B b c -2 A C a c +A C \,b^{2}+B^{2} a c -B C a b +C^{2} a^{2}\right )}{\sum }\textit {\_R} \ln \left (\left (\left (6 a \,c^{2} e^{3}-2 b^{2} c \,e^{3}+2 d \,e^{2} b \,c^{2}-2 d^{2} e \,c^{3}\right ) \textit {\_R}^{2}+\left (3 A \,c^{2} e^{2}-B b c \,e^{2}-B \,c^{2} d e -5 C a c \,e^{2}+2 b^{2} C \,e^{2}-C b c d e +2 C \,c^{2} d^{2}\right ) \textit {\_R} -A C c e +B^{2} c e -B C b e -B C c d +C^{2} a e +C^{2} b d \right ) x +\left (-a b c \,e^{3}+8 a \,c^{2} d \,e^{2}-b^{2} c d \,e^{2}-d^{2} e b \,c^{2}\right ) \textit {\_R}^{2}+\left (A b c \,e^{2}+A \,c^{2} d e -B a c \,e^{2}-B b c d e +C a b \,e^{2}-5 C a d e c +b^{2} C d e +C b c \,d^{2}\right ) \textit {\_R} +A B c e -A C b e -A C c d +C^{2} a d \right )\right )\) \(535\)

Input:

int((C*x^2+B*x+A)/(a*d+(a*e+b*d)*x+(b*e+c*d)*x^2+c*e*x^3),x,method=_RETURN 
VERBOSE)
 

Output:

1/(a*e^2-b*d*e+c*d^2)*(1/2*(-A*c*e+B*c*d+C*a*e-C*b*d)/c*ln(c*x^2+b*x+a)+2* 
(-A*b*e+A*c*d+B*a*e-C*a*d-1/2*(-A*c*e+B*c*d+C*a*e-C*b*d)*b/c)/(4*a*c-b^2)^ 
(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2)))+(A*e^2-B*d*e+C*d^2)/(a*e^2-b*d* 
e+c*d^2)/e*ln(e*x+d)
 

Fricas [A] (verification not implemented)

Time = 32.62 (sec) , antiderivative size = 613, normalized size of antiderivative = 3.13 \[ \int \frac {A+B x+C x^2}{a d+(b d+a e) x+(c d+b e) x^2+c e x^3} \, dx=\left [-\frac {{\left ({\left (C b^{2} + 2 \, A c^{2} - {\left (2 \, C a + B b\right )} c\right )} d e - {\left (C a b - {\left (2 \, B a - A b\right )} c\right )} e^{2}\right )} \sqrt {b^{2} - 4 \, a c} \log \left (\frac {2 \, c^{2} x^{2} + 2 \, b c x + b^{2} - 2 \, a c + \sqrt {b^{2} - 4 \, a c} {\left (2 \, c x + b\right )}}{c x^{2} + b x + a}\right ) + {\left ({\left (C b^{3} + 4 \, B a c^{2} - {\left (4 \, C a b + B b^{2}\right )} c\right )} d e - {\left (C a b^{2} + 4 \, A a c^{2} - {\left (4 \, C a^{2} + A b^{2}\right )} c\right )} e^{2}\right )} \log \left (c x^{2} + b x + a\right ) - 2 \, {\left ({\left (C b^{2} c - 4 \, C a c^{2}\right )} d^{2} - {\left (B b^{2} c - 4 \, B a c^{2}\right )} d e + {\left (A b^{2} c - 4 \, A a c^{2}\right )} e^{2}\right )} \log \left (e x + d\right )}{2 \, {\left ({\left (b^{2} c^{2} - 4 \, a c^{3}\right )} d^{2} e - {\left (b^{3} c - 4 \, a b c^{2}\right )} d e^{2} + {\left (a b^{2} c - 4 \, a^{2} c^{2}\right )} e^{3}\right )}}, -\frac {2 \, {\left ({\left (C b^{2} + 2 \, A c^{2} - {\left (2 \, C a + B b\right )} c\right )} d e - {\left (C a b - {\left (2 \, B a - A b\right )} c\right )} e^{2}\right )} \sqrt {-b^{2} + 4 \, a c} \arctan \left (-\frac {\sqrt {-b^{2} + 4 \, a c} {\left (2 \, c x + b\right )}}{b^{2} - 4 \, a c}\right ) + {\left ({\left (C b^{3} + 4 \, B a c^{2} - {\left (4 \, C a b + B b^{2}\right )} c\right )} d e - {\left (C a b^{2} + 4 \, A a c^{2} - {\left (4 \, C a^{2} + A b^{2}\right )} c\right )} e^{2}\right )} \log \left (c x^{2} + b x + a\right ) - 2 \, {\left ({\left (C b^{2} c - 4 \, C a c^{2}\right )} d^{2} - {\left (B b^{2} c - 4 \, B a c^{2}\right )} d e + {\left (A b^{2} c - 4 \, A a c^{2}\right )} e^{2}\right )} \log \left (e x + d\right )}{2 \, {\left ({\left (b^{2} c^{2} - 4 \, a c^{3}\right )} d^{2} e - {\left (b^{3} c - 4 \, a b c^{2}\right )} d e^{2} + {\left (a b^{2} c - 4 \, a^{2} c^{2}\right )} e^{3}\right )}}\right ] \] Input:

integrate((C*x^2+B*x+A)/(a*d+(a*e+b*d)*x+(b*e+c*d)*x^2+c*e*x^3),x, algorit 
hm="fricas")
 

Output:

[-1/2*(((C*b^2 + 2*A*c^2 - (2*C*a + B*b)*c)*d*e - (C*a*b - (2*B*a - A*b)*c 
)*e^2)*sqrt(b^2 - 4*a*c)*log((2*c^2*x^2 + 2*b*c*x + b^2 - 2*a*c + sqrt(b^2 
 - 4*a*c)*(2*c*x + b))/(c*x^2 + b*x + a)) + ((C*b^3 + 4*B*a*c^2 - (4*C*a*b 
 + B*b^2)*c)*d*e - (C*a*b^2 + 4*A*a*c^2 - (4*C*a^2 + A*b^2)*c)*e^2)*log(c* 
x^2 + b*x + a) - 2*((C*b^2*c - 4*C*a*c^2)*d^2 - (B*b^2*c - 4*B*a*c^2)*d*e 
+ (A*b^2*c - 4*A*a*c^2)*e^2)*log(e*x + d))/((b^2*c^2 - 4*a*c^3)*d^2*e - (b 
^3*c - 4*a*b*c^2)*d*e^2 + (a*b^2*c - 4*a^2*c^2)*e^3), -1/2*(2*((C*b^2 + 2* 
A*c^2 - (2*C*a + B*b)*c)*d*e - (C*a*b - (2*B*a - A*b)*c)*e^2)*sqrt(-b^2 + 
4*a*c)*arctan(-sqrt(-b^2 + 4*a*c)*(2*c*x + b)/(b^2 - 4*a*c)) + ((C*b^3 + 4 
*B*a*c^2 - (4*C*a*b + B*b^2)*c)*d*e - (C*a*b^2 + 4*A*a*c^2 - (4*C*a^2 + A* 
b^2)*c)*e^2)*log(c*x^2 + b*x + a) - 2*((C*b^2*c - 4*C*a*c^2)*d^2 - (B*b^2* 
c - 4*B*a*c^2)*d*e + (A*b^2*c - 4*A*a*c^2)*e^2)*log(e*x + d))/((b^2*c^2 - 
4*a*c^3)*d^2*e - (b^3*c - 4*a*b*c^2)*d*e^2 + (a*b^2*c - 4*a^2*c^2)*e^3)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B x+C x^2}{a d+(b d+a e) x+(c d+b e) x^2+c e x^3} \, dx=\text {Timed out} \] Input:

integrate((C*x**2+B*x+A)/(a*d+(a*e+b*d)*x+(b*e+c*d)*x**2+c*e*x**3),x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {A+B x+C x^2}{a d+(b d+a e) x+(c d+b e) x^2+c e x^3} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((C*x^2+B*x+A)/(a*d+(a*e+b*d)*x+(b*e+c*d)*x^2+c*e*x^3),x, algorit 
hm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` for 
 more deta
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.02 \[ \int \frac {A+B x+C x^2}{a d+(b d+a e) x+(c d+b e) x^2+c e x^3} \, dx=-\frac {{\left (C b d - B c d - C a e + A c e\right )} \log \left (c x^{2} + b x + a\right )}{2 \, {\left (c^{2} d^{2} - b c d e + a c e^{2}\right )}} + \frac {{\left (C d^{2} - B d e + A e^{2}\right )} \log \left ({\left | e x + d \right |}\right )}{c d^{2} e - b d e^{2} + a e^{3}} + \frac {{\left (C b^{2} d - 2 \, C a c d - B b c d + 2 \, A c^{2} d - C a b e + 2 \, B a c e - A b c e\right )} \arctan \left (\frac {2 \, c x + b}{\sqrt {-b^{2} + 4 \, a c}}\right )}{{\left (c^{2} d^{2} - b c d e + a c e^{2}\right )} \sqrt {-b^{2} + 4 \, a c}} \] Input:

integrate((C*x^2+B*x+A)/(a*d+(a*e+b*d)*x+(b*e+c*d)*x^2+c*e*x^3),x, algorit 
hm="giac")
 

Output:

-1/2*(C*b*d - B*c*d - C*a*e + A*c*e)*log(c*x^2 + b*x + a)/(c^2*d^2 - b*c*d 
*e + a*c*e^2) + (C*d^2 - B*d*e + A*e^2)*log(abs(e*x + d))/(c*d^2*e - b*d*e 
^2 + a*e^3) + (C*b^2*d - 2*C*a*c*d - B*b*c*d + 2*A*c^2*d - C*a*b*e + 2*B*a 
*c*e - A*b*c*e)*arctan((2*c*x + b)/sqrt(-b^2 + 4*a*c))/((c^2*d^2 - b*c*d*e 
 + a*c*e^2)*sqrt(-b^2 + 4*a*c))
 

Mupad [B] (verification not implemented)

Time = 18.29 (sec) , antiderivative size = 2467, normalized size of antiderivative = 12.59 \[ \int \frac {A+B x+C x^2}{a d+(b d+a e) x+(c d+b e) x^2+c e x^3} \, dx=\text {Too large to display} \] Input:

int((A + B*x + C*x^2)/(a*d + x*(a*e + b*d) + x^2*(b*e + c*d) + c*e*x^3),x)
 

Output:

(log(d + e*x)*(A*e^2 + C*d^2 - B*d*e))/(a*e^3 - b*d*e^2 + c*d^2*e) - (log( 
6*A*a^2*c*e^4 - 2*A*a*b^2*e^4 - 2*C*a^3*e^4 + B*a^2*b*e^4 - 4*C*a*c^2*d^4 
+ C*b^2*c*d^4 + C*b^3*d^3*e - 2*A*b^3*e^4*x - B*a^2*e^4*(b^2 - 4*a*c)^(1/2 
) + B*a*b^2*e^4*x - 2*B*a^2*c*e^4*x - C*a^2*b*e^4*x + 2*A*c^3*d^3*e*x + B* 
b^3*d*e^3*x + A*c^2*d^3*e*(b^2 - 4*a*c)^(1/2) + 3*C*a^2*d*e^3*(b^2 - 4*a*c 
)^(1/2) + C*b^2*d^3*e*(b^2 - 4*a*c)^(1/2) + 2*A*b^2*e^4*x*(b^2 - 4*a*c)^(1 
/2) + C*a^2*e^4*x*(b^2 - 4*a*c)^(1/2) + 2*C*c^2*d^4*x*(b^2 - 4*a*c)^(1/2) 
- 10*A*a*c^2*d^2*e^2 + A*b^2*c*d^2*e^2 - 4*C*a*b^2*d^2*e^2 + 10*C*a^2*c*d^ 
2*e^2 - C*b^3*d^2*e^2*x + 2*A*a*b*e^4*(b^2 - 4*a*c)^(1/2) + C*b*c*d^4*(b^2 
 - 4*a*c)^(1/2) + B*a*b^2*d*e^3 + A*b*c^2*d^3*e + 6*B*a*c^2*d^3*e - 10*B*a 
^2*c*d*e^3 + 3*C*a^2*b*d*e^3 - 2*B*b^2*c*d^3*e + 7*A*a*b*c*e^4*x + 5*A*c^2 
*d^2*e^2*x*(b^2 - 4*a*c)^(1/2) + C*b^2*d^2*e^2*x*(b^2 - 4*a*c)^(1/2) - 7*A 
*a*c*d*e^3*(b^2 - 4*a*c)^(1/2) - B*a*b*d*e^3*(b^2 - 4*a*c)^(1/2) - 2*B*b*c 
*d^3*e*(b^2 - 4*a*c)^(1/2) - 5*C*a*c*d^3*e*(b^2 - 4*a*c)^(1/2) - 3*A*a*c*e 
^4*x*(b^2 - 4*a*c)^(1/2) - B*a*b*e^4*x*(b^2 - 4*a*c)^(1/2) + 3*B*a*b*c*d^2 
*e^2 - 14*A*a*c^2*d*e^3*x + 5*A*b^2*c*d*e^3*x - B*b*c^2*d^3*e*x - 10*C*a*c 
^2*d^3*e*x + 6*C*a^2*c*d*e^3*x + 3*C*b^2*c*d^3*e*x + A*b*c*d^2*e^2*(b^2 - 
4*a*c)^(1/2) + 7*B*a*c*d^2*e^2*(b^2 - 4*a*c)^(1/2) - 2*C*a*b*d^2*e^2*(b^2 
- 4*a*c)^(1/2) - B*b^2*d*e^3*x*(b^2 - 4*a*c)^(1/2) - 3*B*c^2*d^3*e*x*(b^2 
- 4*a*c)^(1/2) - 3*A*b*c^2*d^2*e^2*x + 14*B*a*c^2*d^2*e^2*x - 2*B*b^2*c...
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 10, normalized size of antiderivative = 0.05 \[ \int \frac {A+B x+C x^2}{a d+(b d+a e) x+(c d+b e) x^2+c e x^3} \, dx=\frac {\mathrm {log}\left (e x +d \right )}{e} \] Input:

int((C*x^2+B*x+A)/(a*d+(a*e+b*d)*x+(b*e+c*d)*x^2+c*e*x^3),x)
 

Output:

log(d + e*x)/e