\(\int \sqrt {a+8 x-8 x^2+4 x^3-x^4} \, dx\) [69]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 330 \[ \int \sqrt {a+8 x-8 x^2+4 x^3-x^4} \, dx=-\frac {1}{3} \sqrt {3+a-2 (1-x)^2-(1-x)^4} (1-x)+\frac {2 \sqrt {-1+\sqrt {4+a}} \left (1+\sqrt {4+a}\right ) \sqrt {1+\frac {(1-x)^2}{1-\sqrt {4+a}}} \sqrt {1+\frac {(1-x)^2}{1+\sqrt {4+a}}} E\left (\arcsin \left (\frac {1-x}{\sqrt {-1+\sqrt {4+a}}}\right )|\frac {1-\sqrt {4+a}}{1+\sqrt {4+a}}\right )}{3 \sqrt {3+a-2 (1-x)^2-(1-x)^4}}-\frac {2 \sqrt {-1+\sqrt {4+a}} \left (4+a+\sqrt {4+a}\right ) \sqrt {1+\frac {(1-x)^2}{1-\sqrt {4+a}}} \sqrt {1+\frac {(1-x)^2}{1+\sqrt {4+a}}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-x}{\sqrt {-1+\sqrt {4+a}}}\right ),\frac {1-\sqrt {4+a}}{1+\sqrt {4+a}}\right )}{3 \sqrt {3+a-2 (1-x)^2-(1-x)^4}} \] Output:

-1/3*(3+a-2*(1-x)^2-(1-x)^4)^(1/2)*(1-x)+2/3*(-1+(4+a)^(1/2))^(1/2)*(1+(4+ 
a)^(1/2))*(1+(1-x)^2/(1-(4+a)^(1/2)))^(1/2)*(1+(1-x)^2/(1+(4+a)^(1/2)))^(1 
/2)*EllipticE((1-x)/(-1+(4+a)^(1/2))^(1/2),((1-(4+a)^(1/2))/(1+(4+a)^(1/2) 
))^(1/2))/(3+a-2*(1-x)^2-(1-x)^4)^(1/2)-2/3*(-1+(4+a)^(1/2))^(1/2)*(4+a+(4 
+a)^(1/2))*(1+(1-x)^2/(1-(4+a)^(1/2)))^(1/2)*(1+(1-x)^2/(1+(4+a)^(1/2)))^( 
1/2)*EllipticF((1-x)/(-1+(4+a)^(1/2))^(1/2),((1-(4+a)^(1/2))/(1+(4+a)^(1/2 
)))^(1/2))/(3+a-2*(1-x)^2-(1-x)^4)^(1/2)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(3470\) vs. \(2(330)=660\).

Time = 16.09 (sec) , antiderivative size = 3470, normalized size of antiderivative = 10.52 \[ \int \sqrt {a+8 x-8 x^2+4 x^3-x^4} \, dx=\text {Result too large to show} \] Input:

Integrate[Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4],x]
 

Output:

(-1/3 + x/3)*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4] + (2*((4*(-Sqrt[-1 - Sqrt 
[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqr 
t[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt 
[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sq 
rt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + S 
qrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - 
 Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 
+ Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(- 
1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*EllipticF[ArcSin[Sqrt[((-Sqrt[-1 - Sqrt[ 
4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqr 
t[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] 
 + x))]], ((-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(Sqrt[-1 - S 
qrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 
+ Sqrt[4 + a]])*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))])/(Sqr 
t[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*Sqr 
t[a + 8*x - 8*x^2 + 4*x^3 - x^4]) + (2*a*(-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[- 
1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[((-Sqrt[-1 - Sq 
rt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/(( 
Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + 
a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*(-1 - Sqrt[-1 + Sqrt[4 + a]] + ...
 

Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 481, normalized size of antiderivative = 1.46, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2458, 1404, 27, 1514, 406, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {a-x^4+4 x^3-8 x^2+8 x} \, dx\)

\(\Big \downarrow \) 2458

\(\displaystyle \int \sqrt {a-(x-1)^4-2 (x-1)^2+3}d(x-1)\)

\(\Big \downarrow \) 1404

\(\displaystyle \frac {1}{3} \int \frac {2 \left (-(x-1)^2+a+3\right )}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}d(x-1)+\frac {1}{3} (x-1) \sqrt {a-(x-1)^4-2 (x-1)^2+3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2}{3} \int \frac {-(x-1)^2+a+3}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}d(x-1)+\frac {1}{3} (x-1) \sqrt {a-(x-1)^4-2 (x-1)^2+3}\)

\(\Big \downarrow \) 1514

\(\displaystyle \frac {2 \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \int \frac {-(x-1)^2+a+3}{\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}d(x-1)}{3 \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {1}{3} (x-1) \sqrt {a-(x-1)^4-2 (x-1)^2+3}\)

\(\Big \downarrow \) 406

\(\displaystyle \frac {2 \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \left ((a+3) \int \frac {1}{\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}d(x-1)-\int \frac {(x-1)^2}{\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}d(x-1)\right )}{3 \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {1}{3} (x-1) \sqrt {a-(x-1)^4-2 (x-1)^2+3}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {2 \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \left (\frac {(a+3) \sqrt {\sqrt {a+4}+1} \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \operatorname {EllipticF}\left (\arctan \left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right ),-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}-\int \frac {(x-1)^2}{\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}d(x-1)\right )}{3 \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {1}{3} (x-1) \sqrt {a-(x-1)^4-2 (x-1)^2+3}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {2 \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \left (\left (1-\sqrt {a+4}\right ) \int \frac {\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}}{\left (\frac {(x-1)^2}{\sqrt {a+4}+1}+1\right )^{3/2}}d(x-1)+\frac {(a+3) \sqrt {\sqrt {a+4}+1} \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \operatorname {EllipticF}\left (\arctan \left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right ),-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}-\frac {\left (1-\sqrt {a+4}\right ) (x-1) \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}}{\sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}\right )}{3 \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {1}{3} (x-1) \sqrt {a-(x-1)^4-2 (x-1)^2+3}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {2 \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \left (\frac {(a+3) \sqrt {\sqrt {a+4}+1} \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \operatorname {EllipticF}\left (\arctan \left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right ),-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}+\frac {\left (1-\sqrt {a+4}\right ) \sqrt {\sqrt {a+4}+1} \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} E\left (\arctan \left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}-\frac {\left (1-\sqrt {a+4}\right ) (x-1) \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}}{\sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}\right )}{3 \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {1}{3} (x-1) \sqrt {a-(x-1)^4-2 (x-1)^2+3}\)

Input:

Int[Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4],x]
 

Output:

(Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]*(-1 + x))/3 + (2*Sqrt[1 + (-1 + x 
)^2/(1 - Sqrt[4 + a])]*Sqrt[1 + (-1 + x)^2/(1 + Sqrt[4 + a])]*(-(((1 - Sqr 
t[4 + a])*Sqrt[1 + (-1 + x)^2/(1 - Sqrt[4 + a])]*(-1 + x))/Sqrt[1 + (-1 + 
x)^2/(1 + Sqrt[4 + a])]) + ((1 - Sqrt[4 + a])*Sqrt[1 + Sqrt[4 + a]]*Sqrt[1 
 + (-1 + x)^2/(1 - Sqrt[4 + a])]*EllipticE[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 
 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(Sqrt[(1 + (-1 + x)^2/(1 - S 
qrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[1 + (-1 + x)^2/(1 + 
Sqrt[4 + a])]) + ((3 + a)*Sqrt[1 + Sqrt[4 + a]]*Sqrt[1 + (-1 + x)^2/(1 - S 
qrt[4 + a])]*EllipticF[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 
+ a])/(1 - Sqrt[4 + a])])/(Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (- 
1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[1 + (-1 + x)^2/(1 + Sqrt[4 + a])])))/(3* 
Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 406
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[e   Int[(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Sim 
p[f   Int[x^2*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, 
f, p, q}, x]
 

rule 1404
Int[((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*((a + b 
*x^2 + c*x^4)^p/(4*p + 1)), x] + Simp[2*(p/(4*p + 1))   Int[(2*a + b*x^2)*( 
a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a* 
c, 0] && GtQ[p, 0] && IntegerQ[2*p]
 

rule 1514
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[1 + 2*c*(x^2/(b - q))]*(Sqrt 
[1 + 2*c*(x^2/(b + q))]/Sqrt[a + b*x^2 + c*x^4])   Int[(d + e*x^2)/(Sqrt[1 
+ 2*c*(x^2/(b - q))]*Sqrt[1 + 2*c*(x^2/(b + q))]), x], x]] /; FreeQ[{a, b, 
c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[c/a]
 

rule 2458
Int[(Pn_)^(p_.), x_Symbol] :> With[{S = Coeff[Pn, x, Expon[Pn, x] - 1]/(Exp 
on[Pn, x]*Coeff[Pn, x, Expon[Pn, x]])}, Subst[Int[ExpandToSum[Pn /. x -> x 
- S, x]^p, x], x, x + S] /; BinomialQ[Pn /. x -> x - S, x] || (IntegerQ[Exp 
on[Pn, x]/2] && TrinomialQ[Pn /. x -> x - S, x])] /; FreeQ[p, x] && PolyQ[P 
n, x] && GtQ[Expon[Pn, x], 2] && NeQ[Coeff[Pn, x, Expon[Pn, x] - 1], 0]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2518\) vs. \(2(276)=552\).

Time = 5.72 (sec) , antiderivative size = 2519, normalized size of antiderivative = 7.63

method result size
default \(\text {Expression too large to display}\) \(2519\)
elliptic \(\text {Expression too large to display}\) \(2519\)
risch \(\text {Expression too large to display}\) \(3022\)

Input:

int((-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/3*x*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)-1/3*(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)-(2 
/3*a+4/3)*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*((-(-1-(a+4)^(1/ 
2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4) 
^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)* 
(x-1+(-1+(a+4)^(1/2))^(1/2))^2*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1-(-1-(a+4)^( 
1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4 
)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1+(-1-(a+4)^(1/2))^(1 
/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2) 
)^(1/2)))^(1/2)/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-1+(a+4) 
^(1/2))^(1/2)/(-(x-1-(-1+(a+4)^(1/2))^(1/2))*(x-1+(-1+(a+4)^(1/2))^(1/2))* 
(x-1-(-1-(a+4)^(1/2))^(1/2))*(x-1+(-1-(a+4)^(1/2))^(1/2)))^(1/2)*EllipticF 
(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^( 
1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2 
))^(1/2)))^(1/2),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))*((-1-(a 
+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4 
)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2))-4/ 
3*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*((-(-1-(a+4)^(1/2))^(1/2 
)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^ 
(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2)*(x-1+(-1 
+(a+4)^(1/2))^(1/2))^2*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1-(-1-(a+4)^(1/2))...
 

Fricas [F]

\[ \int \sqrt {a+8 x-8 x^2+4 x^3-x^4} \, dx=\int { \sqrt {-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x} \,d x } \] Input:

integrate((-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="fricas")
 

Output:

integral(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x), x)
 

Sympy [F]

\[ \int \sqrt {a+8 x-8 x^2+4 x^3-x^4} \, dx=\int \sqrt {a - x^{4} + 4 x^{3} - 8 x^{2} + 8 x}\, dx \] Input:

integrate((-x**4+4*x**3-8*x**2+a+8*x)**(1/2),x)
 

Output:

Integral(sqrt(a - x**4 + 4*x**3 - 8*x**2 + 8*x), x)
 

Maxima [F]

\[ \int \sqrt {a+8 x-8 x^2+4 x^3-x^4} \, dx=\int { \sqrt {-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x} \,d x } \] Input:

integrate((-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x), x)
 

Giac [F]

\[ \int \sqrt {a+8 x-8 x^2+4 x^3-x^4} \, dx=\int { \sqrt {-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x} \,d x } \] Input:

integrate((-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x), x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+8 x-8 x^2+4 x^3-x^4} \, dx=\int \sqrt {-x^4+4\,x^3-8\,x^2+8\,x+a} \,d x \] Input:

int((a + 8*x - 8*x^2 + 4*x^3 - x^4)^(1/2),x)
 

Output:

int((a + 8*x - 8*x^2 + 4*x^3 - x^4)^(1/2), x)
 

Reduce [F]

\[ \int \sqrt {a+8 x-8 x^2+4 x^3-x^4} \, dx=\frac {\sqrt {-x^{4}+4 x^{3}-8 x^{2}+a +8 x}\, x}{3}-\frac {4 \sqrt {-x^{4}+4 x^{3}-8 x^{2}+a +8 x}}{9}+\frac {2 \left (\int \frac {\sqrt {-x^{4}+4 x^{3}-8 x^{2}+a +8 x}}{-x^{4}+4 x^{3}-8 x^{2}+a +8 x}d x \right ) a}{3}+\frac {16 \left (\int \frac {\sqrt {-x^{4}+4 x^{3}-8 x^{2}+a +8 x}}{-x^{4}+4 x^{3}-8 x^{2}+a +8 x}d x \right )}{9}-\frac {2 \left (\int \frac {\sqrt {-x^{4}+4 x^{3}-8 x^{2}+a +8 x}\, x^{3}}{-x^{4}+4 x^{3}-8 x^{2}+a +8 x}d x \right )}{9}+\frac {4 \left (\int \frac {\sqrt {-x^{4}+4 x^{3}-8 x^{2}+a +8 x}\, x}{-x^{4}+4 x^{3}-8 x^{2}+a +8 x}d x \right )}{9} \] Input:

int((-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x)
 

Output:

(3*sqrt(a - x**4 + 4*x**3 - 8*x**2 + 8*x)*x - 4*sqrt(a - x**4 + 4*x**3 - 8 
*x**2 + 8*x) + 6*int(sqrt(a - x**4 + 4*x**3 - 8*x**2 + 8*x)/(a - x**4 + 4* 
x**3 - 8*x**2 + 8*x),x)*a + 16*int(sqrt(a - x**4 + 4*x**3 - 8*x**2 + 8*x)/ 
(a - x**4 + 4*x**3 - 8*x**2 + 8*x),x) - 2*int((sqrt(a - x**4 + 4*x**3 - 8* 
x**2 + 8*x)*x**3)/(a - x**4 + 4*x**3 - 8*x**2 + 8*x),x) + 4*int((sqrt(a - 
x**4 + 4*x**3 - 8*x**2 + 8*x)*x)/(a - x**4 + 4*x**3 - 8*x**2 + 8*x),x))/9