\(\int \frac {1}{\sqrt {8+8 x-x^3+8 x^4}} \, dx\) [85]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 131 \[ \int \frac {1}{\sqrt {8+8 x-x^3+8 x^4}} \, dx=-\frac {\left (87+\sqrt {29} \left (1+\frac {4}{x}\right )^2\right ) \sqrt {\frac {261-6 \left (1+\frac {4}{x}\right )^2+\left (1+\frac {4}{x}\right )^4}{\left (87+\sqrt {29} \left (1+\frac {4}{x}\right )^2\right )^2}} x^2 \operatorname {EllipticF}\left (2 \arctan \left (\frac {4+x}{\sqrt {3} \sqrt [4]{29} x}\right ),\frac {1}{58} \left (29+\sqrt {29}\right )\right )}{8 \sqrt {3} \sqrt [4]{29} \sqrt {8+8 x-x^3+8 x^4}} \] Output:

-1/696*(87+29^(1/2)*(1+4/x)^2)*((261-6*(1+4/x)^2+(1+4/x)^4)/(87+29^(1/2)*( 
1+4/x)^2)^2)^(1/2)*x^2*InverseJacobiAM(2*arctan(1/87*(4+x)*3^(1/2)*29^(3/4 
)/x),1/58*(1682+58*29^(1/2))^(1/2))*3^(1/2)*29^(3/4)/(8*x^4-x^3+8*x+8)^(1/ 
2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4 in optimal.

Time = 11.00 (sec) , antiderivative size = 927, normalized size of antiderivative = 7.08 \[ \int \frac {1}{\sqrt {8+8 x-x^3+8 x^4}} \, dx =\text {Too large to display} \] Input:

Integrate[1/Sqrt[8 + 8*x - x^3 + 8*x^4],x]
 

Output:

(-2*EllipticF[ArcSin[Sqrt[((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0])*( 
Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & 
, 4, 0]))/((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(Root[8 + 8*#1 - 
#1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))]], ((R 
oot[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 
 3, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 
8*#1^4 & , 4, 0]))/((Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8* 
#1 - #1^3 + 8*#1^4 & , 3, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] - R 
oot[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))]*(x - Root[8 + 8*#1 - #1^3 + 8*#1 
^4 & , 2, 0])^2*Sqrt[((Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 
8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 
0]))/((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(Root[8 + 8*#1 - #1^3 
+ 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 3, 0]))]*(Root[8 + 
8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0])* 
Sqrt[((x - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0])*(Root[8 + 8*#1 - #1^3 
+ 8*#1^4 & , 1, 0] - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0])*(x - Root[8 
+ 8*#1 - #1^3 + 8*#1^4 & , 4, 0])*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 2, 0] 
 - Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 4, 0]))/((x - Root[8 + 8*#1 - #1^3 + 
8*#1^4 & , 2, 0])^2*(Root[8 + 8*#1 - #1^3 + 8*#1^4 & , 1, 0] - Root[8 + 8* 
#1 - #1^3 + 8*#1^4 & , 4, 0])^2)])/(Sqrt[8 + 8*x - x^3 + 8*x^4]*(-Root[...
 

Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.28, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {2504, 27, 7270, 1416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {8 x^4-x^3+8 x+8}} \, dx\)

\(\Big \downarrow \) 2504

\(\displaystyle -1024 \int \frac {1}{128 \sqrt {2} \left (1-4 \left (\frac {1}{4}+\frac {1}{x}\right )\right )^2 \sqrt {\frac {256 \left (\frac {1}{4}+\frac {1}{x}\right )^4-96 \left (\frac {1}{4}+\frac {1}{x}\right )^2+261}{\left (1-4 \left (\frac {1}{4}+\frac {1}{x}\right )\right )^4}}}d\left (\frac {1}{4}+\frac {1}{x}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle -4 \sqrt {2} \int \frac {1}{\left (1-4 \left (\frac {1}{4}+\frac {1}{x}\right )\right )^2 \sqrt {\frac {256 \left (\frac {1}{4}+\frac {1}{x}\right )^4-96 \left (\frac {1}{4}+\frac {1}{x}\right )^2+261}{\left (1-4 \left (\frac {1}{4}+\frac {1}{x}\right )\right )^4}}}d\left (\frac {1}{4}+\frac {1}{x}\right )\)

\(\Big \downarrow \) 7270

\(\displaystyle -\frac {4 \sqrt {2} \sqrt {256 \left (\frac {1}{x}+\frac {1}{4}\right )^4-96 \left (\frac {1}{x}+\frac {1}{4}\right )^2+261} \int \frac {1}{\sqrt {256 \left (\frac {1}{4}+\frac {1}{x}\right )^4-96 \left (\frac {1}{4}+\frac {1}{x}\right )^2+261}}d\left (\frac {1}{4}+\frac {1}{x}\right )}{\left (1-4 \left (\frac {1}{x}+\frac {1}{4}\right )\right )^2 \sqrt {\frac {256 \left (\frac {1}{x}+\frac {1}{4}\right )^4-96 \left (\frac {1}{x}+\frac {1}{4}\right )^2+261}{\left (1-4 \left (\frac {1}{x}+\frac {1}{4}\right )\right )^4}}}\)

\(\Big \downarrow \) 1416

\(\displaystyle -\frac {\left (16 \sqrt {29} \left (\frac {1}{x}+\frac {1}{4}\right )^2+87\right ) \sqrt {\frac {256 \left (\frac {1}{x}+\frac {1}{4}\right )^4-96 \left (\frac {1}{x}+\frac {1}{4}\right )^2+261}{\left (16 \sqrt {29} \left (\frac {1}{x}+\frac {1}{4}\right )^2+87\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {4 \left (\frac {1}{4}+\frac {1}{x}\right )}{\sqrt {3} \sqrt [4]{29}}\right ),\frac {1}{58} \left (29+\sqrt {29}\right )\right )}{\sqrt {6} \sqrt [4]{29} \left (1-4 \left (\frac {1}{x}+\frac {1}{4}\right )\right )^2 \sqrt {\frac {256 \left (\frac {1}{x}+\frac {1}{4}\right )^4-96 \left (\frac {1}{x}+\frac {1}{4}\right )^2+261}{\left (1-4 \left (\frac {1}{x}+\frac {1}{4}\right )\right )^4}}}\)

Input:

Int[1/Sqrt[8 + 8*x - x^3 + 8*x^4],x]
 

Output:

-(((87 + 16*Sqrt[29]*(1/4 + x^(-1))^2)*Sqrt[(261 - 96*(1/4 + x^(-1))^2 + 2 
56*(1/4 + x^(-1))^4)/(87 + 16*Sqrt[29]*(1/4 + x^(-1))^2)^2]*EllipticF[2*Ar 
cTan[(4*(1/4 + x^(-1)))/(Sqrt[3]*29^(1/4))], (29 + Sqrt[29])/58])/(Sqrt[6] 
*29^(1/4)*(1 - 4*(1/4 + x^(-1)))^2*Sqrt[(261 - 96*(1/4 + x^(-1))^2 + 256*( 
1/4 + x^(-1))^4)/(1 - 4*(1/4 + x^(-1)))^4]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 2504
Int[(P4_)^(p_), x_Symbol] :> With[{a = Coeff[P4, x, 0], b = Coeff[P4, x, 1] 
, c = Coeff[P4, x, 2], d = Coeff[P4, x, 3], e = Coeff[P4, x, 4]}, Simp[-16* 
a^2   Subst[Int[(1/(b - 4*a*x)^2)*(a*((-3*b^4 + 16*a*b^2*c - 64*a^2*b*d + 2 
56*a^3*e - 32*a^2*(3*b^2 - 8*a*c)*x^2 + 256*a^4*x^4)/(b - 4*a*x)^4))^p, x], 
 x, b/(4*a) + 1/x], x] /; NeQ[a, 0] && NeQ[b, 0] && EqQ[b^3 - 4*a*b*c + 8*a 
^2*d, 0]] /; FreeQ[p, x] && PolyQ[P4, x, 4] && IntegerQ[2*p] &&  !IGtQ[p, 0 
]
 

rule 7270
Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Simp[a^IntPart[p 
]*((a*v^m*w^n)^FracPart[p]/(v^(m*FracPart[p])*w^(n*FracPart[p])))   Int[u*v 
^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !Free 
Q[v, x] &&  !FreeQ[w, x]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(964\) vs. \(2(114)=228\).

Time = 1.09 (sec) , antiderivative size = 965, normalized size of antiderivative = 7.37

method result size
default \(\text {Expression too large to display}\) \(965\)
elliptic \(\text {Expression too large to display}\) \(965\)

Input:

int(1/(8*x^4-x^3+8*x+8)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/2*(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4) 
)*((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)) 
*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4 
)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2 
)))^(1/2)*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))^2*((RootOf(8*_Z^4-_Z^3+8* 
_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))*(x-RootOf(8*_Z^4-_Z^3+8* 
_Z+8,index=3))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3)-RootOf(8*_Z^4-_Z^3+8*_Z 
+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)))^(1/2)*((RootOf(8*_Z^4 
-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))*(x-RootOf(8*_Z^4 
-_Z^3+8*_Z+8,index=4))/(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_ 
Z^3+8*_Z+8,index=1))/(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)))^(1/2)/(RootOf 
(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2))/(RootOf(8 
*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))*2^(1/2)/((x 
-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2) 
)*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=3))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,inde 
x=4)))^(1/2)*EllipticF(((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4- 
_Z^3+8*_Z+8,index=2))*(x-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(RootOf(8*_Z^ 
4-_Z^3+8*_Z+8,index=4)-RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1))/(x-RootOf(8*_Z^ 
4-_Z^3+8*_Z+8,index=2)))^(1/2),((RootOf(8*_Z^4-_Z^3+8*_Z+8,index=2)-RootOf 
(8*_Z^4-_Z^3+8*_Z+8,index=3))*(RootOf(8*_Z^4-_Z^3+8*_Z+8,index=1)-RootO...
 

Fricas [F]

\[ \int \frac {1}{\sqrt {8+8 x-x^3+8 x^4}} \, dx=\int { \frac {1}{\sqrt {8 \, x^{4} - x^{3} + 8 \, x + 8}} \,d x } \] Input:

integrate(1/(8*x^4-x^3+8*x+8)^(1/2),x, algorithm="fricas")
 

Output:

integral(1/sqrt(8*x^4 - x^3 + 8*x + 8), x)
 

Sympy [F]

\[ \int \frac {1}{\sqrt {8+8 x-x^3+8 x^4}} \, dx=\int \frac {1}{\sqrt {8 x^{4} - x^{3} + 8 x + 8}}\, dx \] Input:

integrate(1/(8*x**4-x**3+8*x+8)**(1/2),x)
 

Output:

Integral(1/sqrt(8*x**4 - x**3 + 8*x + 8), x)
 

Maxima [F]

\[ \int \frac {1}{\sqrt {8+8 x-x^3+8 x^4}} \, dx=\int { \frac {1}{\sqrt {8 \, x^{4} - x^{3} + 8 \, x + 8}} \,d x } \] Input:

integrate(1/(8*x^4-x^3+8*x+8)^(1/2),x, algorithm="maxima")
 

Output:

integrate(1/sqrt(8*x^4 - x^3 + 8*x + 8), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt {8+8 x-x^3+8 x^4}} \, dx=\int { \frac {1}{\sqrt {8 \, x^{4} - x^{3} + 8 \, x + 8}} \,d x } \] Input:

integrate(1/(8*x^4-x^3+8*x+8)^(1/2),x, algorithm="giac")
 

Output:

integrate(1/sqrt(8*x^4 - x^3 + 8*x + 8), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {8+8 x-x^3+8 x^4}} \, dx=\int \frac {1}{\sqrt {8\,x^4-x^3+8\,x+8}} \,d x \] Input:

int(1/(8*x - x^3 + 8*x^4 + 8)^(1/2),x)
 

Output:

int(1/(8*x - x^3 + 8*x^4 + 8)^(1/2), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {8+8 x-x^3+8 x^4}} \, dx=\int \frac {\sqrt {8 x^{4}-x^{3}+8 x +8}}{8 x^{4}-x^{3}+8 x +8}d x \] Input:

int(1/(8*x^4-x^3+8*x+8)^(1/2),x)
 

Output:

int(sqrt(8*x**4 - x**3 + 8*x + 8)/(8*x**4 - x**3 + 8*x + 8),x)