\(\int \frac {(d+e x)^2}{a+c x^4} \, dx\) [174]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 220 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\frac {d e \arctan \left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {c}}-\frac {\left (\sqrt {c} d^2+\sqrt {a} e^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d^2+\sqrt {a} e^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x}{\sqrt {a}+\sqrt {c} x^2}\right )}{2 \sqrt {2} a^{3/4} c^{3/4}} \] Output:

d*e*arctan(c^(1/2)*x^2/a^(1/2))/a^(1/2)/c^(1/2)+1/4*(c^(1/2)*d^2+a^(1/2)*e 
^2)*arctan(-1+2^(1/2)*c^(1/4)*x/a^(1/4))*2^(1/2)/a^(3/4)/c^(3/4)+1/4*(c^(1 
/2)*d^2+a^(1/2)*e^2)*arctan(1+2^(1/2)*c^(1/4)*x/a^(1/4))*2^(1/2)/a^(3/4)/c 
^(3/4)+1/4*(c^(1/2)*d^2-a^(1/2)*e^2)*arctanh(2^(1/2)*a^(1/4)*c^(1/4)*x/(a^ 
(1/2)+c^(1/2)*x^2))*2^(1/2)/a^(3/4)/c^(3/4)
 

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.10 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\frac {-2 \left (\sqrt {2} \sqrt {c} d^2+4 \sqrt [4]{a} \sqrt [4]{c} d e+\sqrt {2} \sqrt {a} e^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )+2 \left (\sqrt {2} \sqrt {c} d^2-4 \sqrt [4]{a} \sqrt [4]{c} d e+\sqrt {2} \sqrt {a} e^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )-\sqrt {2} \left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \left (\log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )-\log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )\right )}{8 a^{3/4} c^{3/4}} \] Input:

Integrate[(d + e*x)^2/(a + c*x^4),x]
 

Output:

(-2*(Sqrt[2]*Sqrt[c]*d^2 + 4*a^(1/4)*c^(1/4)*d*e + Sqrt[2]*Sqrt[a]*e^2)*Ar 
cTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + 2*(Sqrt[2]*Sqrt[c]*d^2 - 4*a^(1/4) 
*c^(1/4)*d*e + Sqrt[2]*Sqrt[a]*e^2)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4) 
] - Sqrt[2]*(Sqrt[c]*d^2 - Sqrt[a]*e^2)*(Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^( 
1/4)*x + Sqrt[c]*x^2] - Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]* 
x^2]))/(8*a^(3/4)*c^(3/4))
 

Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 291, normalized size of antiderivative = 1.32, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {2415, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^2}{a+c x^4} \, dx\)

\(\Big \downarrow \) 2415

\(\displaystyle \int \left (\frac {d^2+e^2 x^2}{a+c x^4}+\frac {2 d e x}{a+c x^4}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right ) \left (\sqrt {a} e^2+\sqrt {c} d^2\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right ) \left (\sqrt {a} e^2+\sqrt {c} d^2\right )}{2 \sqrt {2} a^{3/4} c^{3/4}}-\frac {\left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {\left (\sqrt {c} d^2-\sqrt {a} e^2\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} c^{3/4}}+\frac {d e \arctan \left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {c}}\)

Input:

Int[(d + e*x)^2/(a + c*x^4),x]
 

Output:

(d*e*ArcTan[(Sqrt[c]*x^2)/Sqrt[a]])/(Sqrt[a]*Sqrt[c]) - ((Sqrt[c]*d^2 + Sq 
rt[a]*e^2)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*c^( 
3/4)) + ((Sqrt[c]*d^2 + Sqrt[a]*e^2)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4 
)])/(2*Sqrt[2]*a^(3/4)*c^(3/4)) - ((Sqrt[c]*d^2 - Sqrt[a]*e^2)*Log[Sqrt[a] 
 - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*c^(3/4)) + 
 ((Sqrt[c]*d^2 - Sqrt[a]*e^2)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sq 
rt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*c^(3/4))
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2415
Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[x^ii*((Coeff 
[Pq, x, ii] + Coeff[Pq, x, n/2 + ii]*x^(n/2))/(a + b*x^n)), {ii, 0, n/2 - 1 
}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n/2, 
 0] && Expon[Pq, x] < n
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.26 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.20

method result size
risch \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+a \right )}{\sum }\frac {\left (\textit {\_R}^{2} e^{2}+2 \textit {\_R} d e +d^{2}\right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{4 c}\) \(43\)
default \(\frac {d^{2} \left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{8 a}+\frac {d e \arctan \left (\sqrt {\frac {c}{a}}\, x^{2}\right )}{\sqrt {a c}}+\frac {e^{2} \sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{8 c \left (\frac {a}{c}\right )^{\frac {1}{4}}}\) \(230\)

Input:

int((e*x+d)^2/(c*x^4+a),x,method=_RETURNVERBOSE)
 

Output:

1/4/c*sum((_R^2*e^2+2*_R*d*e+d^2)/_R^3*ln(x-_R),_R=RootOf(_Z^4*c+a))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 3.04 (sec) , antiderivative size = 86139, normalized size of antiderivative = 391.54 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\text {Too large to display} \] Input:

integrate((e*x+d)^2/(c*x^4+a),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [A] (verification not implemented)

Time = 2.44 (sec) , antiderivative size = 277, normalized size of antiderivative = 1.26 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\operatorname {RootSum} {\left (256 t^{4} a^{3} c^{3} + 192 t^{2} a^{2} c^{2} d^{2} e^{2} + t \left (32 a^{2} c d e^{5} - 32 a c^{2} d^{5} e\right ) + a^{2} e^{8} + 2 a c d^{4} e^{4} + c^{2} d^{8}, \left ( t \mapsto t \log {\left (x + \frac {64 t^{3} a^{4} c^{2} e^{6} + 448 t^{3} a^{3} c^{3} d^{4} e^{2} - 160 t^{2} a^{3} c^{2} d^{3} e^{5} + 32 t^{2} a^{2} c^{3} d^{7} e + 60 t a^{3} c d^{2} e^{8} + 256 t a^{2} c^{2} d^{6} e^{4} + 4 t a c^{3} d^{10} + 6 a^{3} d e^{11} - 24 a^{2} c d^{5} e^{7} - 30 a c^{2} d^{9} e^{3}}{a^{3} e^{12} - 33 a^{2} c d^{4} e^{8} - 33 a c^{2} d^{8} e^{4} + c^{3} d^{12}} \right )} \right )\right )} \] Input:

integrate((e*x+d)**2/(c*x**4+a),x)
 

Output:

RootSum(256*_t**4*a**3*c**3 + 192*_t**2*a**2*c**2*d**2*e**2 + _t*(32*a**2* 
c*d*e**5 - 32*a*c**2*d**5*e) + a**2*e**8 + 2*a*c*d**4*e**4 + c**2*d**8, La 
mbda(_t, _t*log(x + (64*_t**3*a**4*c**2*e**6 + 448*_t**3*a**3*c**3*d**4*e* 
*2 - 160*_t**2*a**3*c**2*d**3*e**5 + 32*_t**2*a**2*c**3*d**7*e + 60*_t*a** 
3*c*d**2*e**8 + 256*_t*a**2*c**2*d**6*e**4 + 4*_t*a*c**3*d**10 + 6*a**3*d* 
e**11 - 24*a**2*c*d**5*e**7 - 30*a*c**2*d**9*e**3)/(a**3*e**12 - 33*a**2*c 
*d**4*e**8 - 33*a*c**2*d**8*e**4 + c**3*d**12))))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 275, normalized size of antiderivative = 1.25 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\frac {\sqrt {2} {\left (\sqrt {c} d^{2} - \sqrt {a} e^{2}\right )} \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} c^{\frac {3}{4}}} - \frac {\sqrt {2} {\left (\sqrt {c} d^{2} - \sqrt {a} e^{2}\right )} \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} c^{\frac {3}{4}}} + \frac {{\left (\sqrt {2} a^{\frac {1}{4}} c^{\frac {3}{4}} d^{2} + \sqrt {2} a^{\frac {3}{4}} c^{\frac {1}{4}} e^{2} - 4 \, \sqrt {a} \sqrt {c} d e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{4 \, a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {c}} c^{\frac {3}{4}}} + \frac {{\left (\sqrt {2} a^{\frac {1}{4}} c^{\frac {3}{4}} d^{2} + \sqrt {2} a^{\frac {3}{4}} c^{\frac {1}{4}} e^{2} + 4 \, \sqrt {a} \sqrt {c} d e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{4 \, a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {c}} c^{\frac {3}{4}}} \] Input:

integrate((e*x+d)^2/(c*x^4+a),x, algorithm="maxima")
 

Output:

1/8*sqrt(2)*(sqrt(c)*d^2 - sqrt(a)*e^2)*log(sqrt(c)*x^2 + sqrt(2)*a^(1/4)* 
c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(3/4)) - 1/8*sqrt(2)*(sqrt(c)*d^2 - sqrt(a 
)*e^2)*log(sqrt(c)*x^2 - sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^( 
3/4)) + 1/4*(sqrt(2)*a^(1/4)*c^(3/4)*d^2 + sqrt(2)*a^(3/4)*c^(1/4)*e^2 - 4 
*sqrt(a)*sqrt(c)*d*e)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x + sqrt(2)*a^(1/4)*c^ 
(1/4))/sqrt(sqrt(a)*sqrt(c)))/(a^(3/4)*sqrt(sqrt(a)*sqrt(c))*c^(3/4)) + 1/ 
4*(sqrt(2)*a^(1/4)*c^(3/4)*d^2 + sqrt(2)*a^(3/4)*c^(1/4)*e^2 + 4*sqrt(a)*s 
qrt(c)*d*e)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1/4))/sqr 
t(sqrt(a)*sqrt(c)))/(a^(3/4)*sqrt(sqrt(a)*sqrt(c))*c^(3/4))
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 287, normalized size of antiderivative = 1.30 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\frac {\sqrt {2} {\left (2 \, \sqrt {2} \sqrt {a c} c^{2} d e + \left (a c^{3}\right )^{\frac {1}{4}} c^{2} d^{2} + \left (a c^{3}\right )^{\frac {3}{4}} e^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{4 \, a c^{3}} + \frac {\sqrt {2} {\left (2 \, \sqrt {2} \sqrt {a c} c^{2} d e + \left (a c^{3}\right )^{\frac {1}{4}} c^{2} d^{2} + \left (a c^{3}\right )^{\frac {3}{4}} e^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{4 \, a c^{3}} + \frac {\sqrt {2} {\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d^{2} - \left (a c^{3}\right )^{\frac {3}{4}} e^{2}\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{8 \, a c^{3}} - \frac {\sqrt {2} {\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d^{2} - \left (a c^{3}\right )^{\frac {3}{4}} e^{2}\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{8 \, a c^{3}} \] Input:

integrate((e*x+d)^2/(c*x^4+a),x, algorithm="giac")
 

Output:

1/4*sqrt(2)*(2*sqrt(2)*sqrt(a*c)*c^2*d*e + (a*c^3)^(1/4)*c^2*d^2 + (a*c^3) 
^(3/4)*e^2)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a 
*c^3) + 1/4*sqrt(2)*(2*sqrt(2)*sqrt(a*c)*c^2*d*e + (a*c^3)^(1/4)*c^2*d^2 + 
 (a*c^3)^(3/4)*e^2)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^( 
1/4))/(a*c^3) + 1/8*sqrt(2)*((a*c^3)^(1/4)*c^2*d^2 - (a*c^3)^(3/4)*e^2)*lo 
g(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a*c^3) - 1/8*sqrt(2)*((a*c^3)^ 
(1/4)*c^2*d^2 - (a*c^3)^(3/4)*e^2)*log(x^2 - sqrt(2)*x*(a/c)^(1/4) + sqrt( 
a/c))/(a*c^3)
 

Mupad [B] (verification not implemented)

Time = 21.72 (sec) , antiderivative size = 556, normalized size of antiderivative = 2.53 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\sum _{k=1}^4\ln \left (3\,c^2\,d^4\,e^2-a\,c\,e^6+4\,c^2\,d^3\,e^3\,x-\mathrm {root}\left (256\,a^3\,c^3\,z^4+192\,a^2\,c^2\,d^2\,e^2\,z^2+32\,a^2\,c\,d\,e^5\,z-32\,a\,c^2\,d^5\,e\,z+2\,a\,c\,d^4\,e^4+c^2\,d^8+a^2\,e^8,z,k\right )\,c^3\,d^4\,x\,4-{\mathrm {root}\left (256\,a^3\,c^3\,z^4+192\,a^2\,c^2\,d^2\,e^2\,z^2+32\,a^2\,c\,d\,e^5\,z-32\,a\,c^2\,d^5\,e\,z+2\,a\,c\,d^4\,e^4+c^2\,d^8+a^2\,e^8,z,k\right )}^2\,a\,c^3\,d^2\,16+\mathrm {root}\left (256\,a^3\,c^3\,z^4+192\,a^2\,c^2\,d^2\,e^2\,z^2+32\,a^2\,c\,d\,e^5\,z-32\,a\,c^2\,d^5\,e\,z+2\,a\,c\,d^4\,e^4+c^2\,d^8+a^2\,e^8,z,k\right )\,a\,c^2\,e^4\,x\,4-\mathrm {root}\left (256\,a^3\,c^3\,z^4+192\,a^2\,c^2\,d^2\,e^2\,z^2+32\,a^2\,c\,d\,e^5\,z-32\,a\,c^2\,d^5\,e\,z+2\,a\,c\,d^4\,e^4+c^2\,d^8+a^2\,e^8,z,k\right )\,a\,c^2\,d\,e^3\,16+{\mathrm {root}\left (256\,a^3\,c^3\,z^4+192\,a^2\,c^2\,d^2\,e^2\,z^2+32\,a^2\,c\,d\,e^5\,z-32\,a\,c^2\,d^5\,e\,z+2\,a\,c\,d^4\,e^4+c^2\,d^8+a^2\,e^8,z,k\right )}^2\,a\,c^3\,d\,e\,x\,32\right )\,\mathrm {root}\left (256\,a^3\,c^3\,z^4+192\,a^2\,c^2\,d^2\,e^2\,z^2+32\,a^2\,c\,d\,e^5\,z-32\,a\,c^2\,d^5\,e\,z+2\,a\,c\,d^4\,e^4+c^2\,d^8+a^2\,e^8,z,k\right ) \] Input:

int((d + e*x)^2/(a + c*x^4),x)
 

Output:

symsum(log(3*c^2*d^4*e^2 - a*c*e^6 + 4*c^2*d^3*e^3*x - 4*root(256*a^3*c^3* 
z^4 + 192*a^2*c^2*d^2*e^2*z^2 + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z + 2*a* 
c*d^4*e^4 + c^2*d^8 + a^2*e^8, z, k)*c^3*d^4*x - 16*root(256*a^3*c^3*z^4 + 
 192*a^2*c^2*d^2*e^2*z^2 + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z + 2*a*c*d^4 
*e^4 + c^2*d^8 + a^2*e^8, z, k)^2*a*c^3*d^2 + 4*root(256*a^3*c^3*z^4 + 192 
*a^2*c^2*d^2*e^2*z^2 + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z + 2*a*c*d^4*e^4 
 + c^2*d^8 + a^2*e^8, z, k)*a*c^2*e^4*x - 16*root(256*a^3*c^3*z^4 + 192*a^ 
2*c^2*d^2*e^2*z^2 + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z + 2*a*c*d^4*e^4 + 
c^2*d^8 + a^2*e^8, z, k)*a*c^2*d*e^3 + 32*root(256*a^3*c^3*z^4 + 192*a^2*c 
^2*d^2*e^2*z^2 + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z + 2*a*c*d^4*e^4 + c^2 
*d^8 + a^2*e^8, z, k)^2*a*c^3*d*e*x)*root(256*a^3*c^3*z^4 + 192*a^2*c^2*d^ 
2*e^2*z^2 + 32*a^2*c*d*e^5*z - 32*a*c^2*d^5*e*z + 2*a*c*d^4*e^4 + c^2*d^8 
+ a^2*e^8, z, k), k, 1, 4)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 371, normalized size of antiderivative = 1.69 \[ \int \frac {(d+e x)^2}{a+c x^4} \, dx=\frac {-2 c^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) e^{2}-2 c^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) d^{2}-8 \sqrt {c}\, \sqrt {a}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) d e +2 c^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) e^{2}+2 c^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) d^{2}-8 \sqrt {c}\, \sqrt {a}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {c}\, x}{c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) d e +c^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (-c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) e^{2}-c^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) e^{2}-c^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (-c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) d^{2}+c^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (c^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {c}\, x^{2}\right ) d^{2}}{8 a c} \] Input:

int((e*x+d)^2/(c*x^4+a),x)
 

Output:

( - 2*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c 
)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*e**2 - 2*c**(3/4)*a**(1/4)*sqrt(2)*atan( 
(c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*d** 
2 - 8*sqrt(c)*sqrt(a)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**( 
1/4)*a**(1/4)*sqrt(2)))*d*e + 2*c**(1/4)*a**(3/4)*sqrt(2)*atan((c**(1/4)*a 
**(1/4)*sqrt(2) + 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*e**2 + 2*c**(3 
/4)*a**(1/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(c)*x)/(c**(1 
/4)*a**(1/4)*sqrt(2)))*d**2 - 8*sqrt(c)*sqrt(a)*atan((c**(1/4)*a**(1/4)*sq 
rt(2) + 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*d*e + c**(1/4)*a**(3/4)* 
sqrt(2)*log( - c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*e**2 
- c**(1/4)*a**(3/4)*sqrt(2)*log(c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sq 
rt(c)*x**2)*e**2 - c**(3/4)*a**(1/4)*sqrt(2)*log( - c**(1/4)*a**(1/4)*sqrt 
(2)*x + sqrt(a) + sqrt(c)*x**2)*d**2 + c**(3/4)*a**(1/4)*sqrt(2)*log(c**(1 
/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*d**2)/(8*a*c)