\(\int \frac {1}{(a+c x^4)^3} \, dx\) [188]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 9, antiderivative size = 168 \[ \int \frac {1}{\left (a+c x^4\right )^3} \, dx=\frac {x}{8 a \left (a+c x^4\right )^2}+\frac {7 x}{32 a^2 \left (a+c x^4\right )}-\frac {21 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{c}}+\frac {21 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{c}}+\frac {21 \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x}{\sqrt {a}+\sqrt {c} x^2}\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{c}} \] Output:

1/8*x/a/(c*x^4+a)^2+7/32*x/a^2/(c*x^4+a)+21/128*arctan(-1+2^(1/2)*c^(1/4)* 
x/a^(1/4))*2^(1/2)/a^(11/4)/c^(1/4)+21/128*arctan(1+2^(1/2)*c^(1/4)*x/a^(1 
/4))*2^(1/2)/a^(11/4)/c^(1/4)+21/128*arctanh(2^(1/2)*a^(1/4)*c^(1/4)*x/(a^ 
(1/2)+c^(1/2)*x^2))*2^(1/2)/a^(11/4)/c^(1/4)
 

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.19 \[ \int \frac {1}{\left (a+c x^4\right )^3} \, dx=\frac {\frac {32 a^{7/4} x}{\left (a+c x^4\right )^2}+\frac {56 a^{3/4} x}{a+c x^4}-\frac {42 \sqrt {2} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt [4]{c}}+\frac {42 \sqrt {2} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt [4]{c}}-\frac {21 \sqrt {2} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{\sqrt [4]{c}}+\frac {21 \sqrt {2} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{\sqrt [4]{c}}}{256 a^{11/4}} \] Input:

Integrate[(a + c*x^4)^(-3),x]
 

Output:

((32*a^(7/4)*x)/(a + c*x^4)^2 + (56*a^(3/4)*x)/(a + c*x^4) - (42*Sqrt[2]*A 
rcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/c^(1/4) + (42*Sqrt[2]*ArcTan[1 + ( 
Sqrt[2]*c^(1/4)*x)/a^(1/4)])/c^(1/4) - (21*Sqrt[2]*Log[Sqrt[a] - Sqrt[2]*a 
^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c^(1/4) + (21*Sqrt[2]*Log[Sqrt[a] + Sqrt[ 
2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c^(1/4))/(256*a^(11/4))
 

Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 250, normalized size of antiderivative = 1.49, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.111, Rules used = {749, 749, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+c x^4\right )^3} \, dx\)

\(\Big \downarrow \) 749

\(\displaystyle \frac {7 \int \frac {1}{\left (c x^4+a\right )^2}dx}{8 a}+\frac {x}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 749

\(\displaystyle \frac {7 \left (\frac {3 \int \frac {1}{c x^4+a}dx}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {a}}+\frac {\int \frac {\sqrt {c} x^2+\sqrt {a}}{c x^4+a}dx}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\frac {\int \frac {1}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {c}}+\frac {\int \frac {1}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {c}}}{2 \sqrt {a}}+\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {a}}+\frac {\frac {\int \frac {1}{-\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )^2-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\int \frac {1}{-\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )^2-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\int \frac {\sqrt {a}-\sqrt {c} x^2}{c x^4+a}dx}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{\sqrt [4]{c} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}\right )}{\sqrt [4]{c} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{\sqrt [4]{c} \left (x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}\right )}{\sqrt [4]{c} \left (x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}\right )}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{c} x}{x^2-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt {2} \sqrt [4]{a} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} x+\sqrt [4]{a}}{x^2+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+\frac {\sqrt {a}}{\sqrt {c}}}dx}{2 \sqrt [4]{a} \sqrt {c}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x}{8 a \left (a+c x^4\right )^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {7 \left (\frac {3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{c}}}{2 \sqrt {a}}\right )}{4 a}+\frac {x}{4 a \left (a+c x^4\right )}\right )}{8 a}+\frac {x}{8 a \left (a+c x^4\right )^2}\)

Input:

Int[(a + c*x^4)^(-3),x]
 

Output:

x/(8*a*(a + c*x^4)^2) + (7*(x/(4*a*(a + c*x^4)) + (3*((-(ArcTan[1 - (Sqrt[ 
2]*c^(1/4)*x)/a^(1/4)]/(Sqrt[2]*a^(1/4)*c^(1/4))) + ArcTan[1 + (Sqrt[2]*c^ 
(1/4)*x)/a^(1/4)]/(Sqrt[2]*a^(1/4)*c^(1/4)))/(2*Sqrt[a]) + (-1/2*Log[Sqrt[ 
a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]/(Sqrt[2]*a^(1/4)*c^(1/4)) + 
Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]/(2*Sqrt[2]*a^(1/4)* 
c^(1/4)))/(2*Sqrt[a])))/(4*a)))/(8*a)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 749
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 
 1)/(a*n*(p + 1))), x] + Simp[(n*(p + 1) + 1)/(a*n*(p + 1))   Int[(a + b*x^ 
n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (Inte 
gerQ[2*p] || Denominator[p + 1/n] < Denominator[p])
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.16 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.34

method result size
risch \(\frac {\frac {7 c \,x^{5}}{32 a^{2}}+\frac {11 x}{32 a}}{\left (c \,x^{4}+a \right )^{2}}+\frac {21 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}\right )}{128 a^{2} c}\) \(57\)
default \(\frac {x}{8 a \left (c \,x^{4}+a \right )^{2}}+\frac {\frac {7 x}{32 a \left (c \,x^{4}+a \right )}+\frac {21 \left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{256 a^{2}}}{a}\) \(139\)

Input:

int(1/(c*x^4+a)^3,x,method=_RETURNVERBOSE)
 

Output:

(7/32*c/a^2*x^5+11/32/a*x)/(c*x^4+a)^2+21/128/a^2/c*sum(1/_R^3*ln(x-_R),_R 
=RootOf(_Z^4*c+a))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 255, normalized size of antiderivative = 1.52 \[ \int \frac {1}{\left (a+c x^4\right )^3} \, dx=\frac {28 \, c x^{5} + 21 \, {\left (a^{2} c^{2} x^{8} + 2 \, a^{3} c x^{4} + a^{4}\right )} \left (-\frac {1}{a^{11} c}\right )^{\frac {1}{4}} \log \left (a^{3} \left (-\frac {1}{a^{11} c}\right )^{\frac {1}{4}} + x\right ) - 21 \, {\left (-i \, a^{2} c^{2} x^{8} - 2 i \, a^{3} c x^{4} - i \, a^{4}\right )} \left (-\frac {1}{a^{11} c}\right )^{\frac {1}{4}} \log \left (i \, a^{3} \left (-\frac {1}{a^{11} c}\right )^{\frac {1}{4}} + x\right ) - 21 \, {\left (i \, a^{2} c^{2} x^{8} + 2 i \, a^{3} c x^{4} + i \, a^{4}\right )} \left (-\frac {1}{a^{11} c}\right )^{\frac {1}{4}} \log \left (-i \, a^{3} \left (-\frac {1}{a^{11} c}\right )^{\frac {1}{4}} + x\right ) - 21 \, {\left (a^{2} c^{2} x^{8} + 2 \, a^{3} c x^{4} + a^{4}\right )} \left (-\frac {1}{a^{11} c}\right )^{\frac {1}{4}} \log \left (-a^{3} \left (-\frac {1}{a^{11} c}\right )^{\frac {1}{4}} + x\right ) + 44 \, a x}{128 \, {\left (a^{2} c^{2} x^{8} + 2 \, a^{3} c x^{4} + a^{4}\right )}} \] Input:

integrate(1/(c*x^4+a)^3,x, algorithm="fricas")
 

Output:

1/128*(28*c*x^5 + 21*(a^2*c^2*x^8 + 2*a^3*c*x^4 + a^4)*(-1/(a^11*c))^(1/4) 
*log(a^3*(-1/(a^11*c))^(1/4) + x) - 21*(-I*a^2*c^2*x^8 - 2*I*a^3*c*x^4 - I 
*a^4)*(-1/(a^11*c))^(1/4)*log(I*a^3*(-1/(a^11*c))^(1/4) + x) - 21*(I*a^2*c 
^2*x^8 + 2*I*a^3*c*x^4 + I*a^4)*(-1/(a^11*c))^(1/4)*log(-I*a^3*(-1/(a^11*c 
))^(1/4) + x) - 21*(a^2*c^2*x^8 + 2*a^3*c*x^4 + a^4)*(-1/(a^11*c))^(1/4)*l 
og(-a^3*(-1/(a^11*c))^(1/4) + x) + 44*a*x)/(a^2*c^2*x^8 + 2*a^3*c*x^4 + a^ 
4)
 

Sympy [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.38 \[ \int \frac {1}{\left (a+c x^4\right )^3} \, dx=\frac {11 a x + 7 c x^{5}}{32 a^{4} + 64 a^{3} c x^{4} + 32 a^{2} c^{2} x^{8}} + \operatorname {RootSum} {\left (268435456 t^{4} a^{11} c + 194481, \left ( t \mapsto t \log {\left (\frac {128 t a^{3}}{21} + x \right )} \right )\right )} \] Input:

integrate(1/(c*x**4+a)**3,x)
 

Output:

(11*a*x + 7*c*x**5)/(32*a**4 + 64*a**3*c*x**4 + 32*a**2*c**2*x**8) + RootS 
um(268435456*_t**4*a**11*c + 194481, Lambda(_t, _t*log(128*_t*a**3/21 + x) 
))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.26 \[ \int \frac {1}{\left (a+c x^4\right )^3} \, dx=\frac {7 \, c x^{5} + 11 \, a x}{32 \, {\left (a^{2} c^{2} x^{8} + 2 \, a^{3} c x^{4} + a^{4}\right )}} + \frac {21 \, {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {c}}} + \frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {c}}} + \frac {\sqrt {2} \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} c^{\frac {1}{4}}} - \frac {\sqrt {2} \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} c^{\frac {1}{4}}}\right )}}{256 \, a^{2}} \] Input:

integrate(1/(c*x^4+a)^3,x, algorithm="maxima")
 

Output:

1/32*(7*c*x^5 + 11*a*x)/(a^2*c^2*x^8 + 2*a^3*c*x^4 + a^4) + 21/256*(2*sqrt 
(2)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x + sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a 
)*sqrt(c)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(c))) + 2*sqrt(2)*arctan(1/2*sqrt(2) 
*(2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(sqrt(a)*s 
qrt(sqrt(a)*sqrt(c))) + sqrt(2)*log(sqrt(c)*x^2 + sqrt(2)*a^(1/4)*c^(1/4)* 
x + sqrt(a))/(a^(3/4)*c^(1/4)) - sqrt(2)*log(sqrt(c)*x^2 - sqrt(2)*a^(1/4) 
*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(1/4)))/a^2
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.21 \[ \int \frac {1}{\left (a+c x^4\right )^3} \, dx=\frac {21 \, \sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{128 \, a^{3} c} + \frac {21 \, \sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{128 \, a^{3} c} + \frac {21 \, \sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{256 \, a^{3} c} - \frac {21 \, \sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{256 \, a^{3} c} + \frac {7 \, c x^{5} + 11 \, a x}{32 \, {\left (c x^{4} + a\right )}^{2} a^{2}} \] Input:

integrate(1/(c*x^4+a)^3,x, algorithm="giac")
 

Output:

21/128*sqrt(2)*(a*c^3)^(1/4)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4) 
)/(a/c)^(1/4))/(a^3*c) + 21/128*sqrt(2)*(a*c^3)^(1/4)*arctan(1/2*sqrt(2)*( 
2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^3*c) + 21/256*sqrt(2)*(a*c^3)^( 
1/4)*log(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a^3*c) - 21/256*sqrt(2) 
*(a*c^3)^(1/4)*log(x^2 - sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a^3*c) + 1/32 
*(7*c*x^5 + 11*a*x)/((c*x^4 + a)^2*a^2)
 

Mupad [B] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.48 \[ \int \frac {1}{\left (a+c x^4\right )^3} \, dx=\frac {\frac {11\,x}{32\,a}+\frac {7\,c\,x^5}{32\,a^2}}{a^2+2\,a\,c\,x^4+c^2\,x^8}-\frac {21\,\mathrm {atan}\left (\frac {c^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )}{64\,{\left (-a\right )}^{11/4}\,c^{1/4}}-\frac {21\,\mathrm {atanh}\left (\frac {c^{1/4}\,x}{{\left (-a\right )}^{1/4}}\right )}{64\,{\left (-a\right )}^{11/4}\,c^{1/4}} \] Input:

int(1/(a + c*x^4)^3,x)
 

Output:

((11*x)/(32*a) + (7*c*x^5)/(32*a^2))/(a^2 + c^2*x^8 + 2*a*c*x^4) - (21*ata 
n((c^(1/4)*x)/(-a)^(1/4)))/(64*(-a)^(11/4)*c^(1/4)) - (21*atanh((c^(1/4)*x 
)/(-a)^(1/4)))/(64*(-a)^(11/4)*c^(1/4))
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 474, normalized size of antiderivative = 2.82 \[ \int \frac {1}{\left (a+c x^4\right )^3} \, dx =\text {Too large to display} \] Input:

int(1/(c*x^4+a)^3,x)
 

Output:

( - 42*c**(3/4)*a**(1/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt( 
c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a**2 - 84*c**(3/4)*a**(1/4)*sqrt(2)*ata 
n((c**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a 
*c*x**4 - 42*c**(3/4)*a**(1/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) - 2 
*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*c**2*x**8 + 42*c**(3/4)*a**(1/4)* 
sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)* 
sqrt(2)))*a**2 + 84*c**(3/4)*a**(1/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt 
(2) + 2*sqrt(c)*x)/(c**(1/4)*a**(1/4)*sqrt(2)))*a*c*x**4 + 42*c**(3/4)*a** 
(1/4)*sqrt(2)*atan((c**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(c)*x)/(c**(1/4)*a** 
(1/4)*sqrt(2)))*c**2*x**8 - 21*c**(3/4)*a**(1/4)*sqrt(2)*log( - c**(1/4)*a 
**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a**2 - 42*c**(3/4)*a**(1/4)*sq 
rt(2)*log( - c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a*c*x** 
4 - 21*c**(3/4)*a**(1/4)*sqrt(2)*log( - c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt 
(a) + sqrt(c)*x**2)*c**2*x**8 + 21*c**(3/4)*a**(1/4)*sqrt(2)*log(c**(1/4)* 
a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a**2 + 42*c**(3/4)*a**(1/4)*s 
qrt(2)*log(c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(c)*x**2)*a*c*x**4 
+ 21*c**(3/4)*a**(1/4)*sqrt(2)*log(c**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + 
 sqrt(c)*x**2)*c**2*x**8 + 88*a**2*c*x + 56*a*c**2*x**5)/(256*a**3*c*(a**2 
 + 2*a*c*x**4 + c**2*x**8))